[1]
Hansell D.A., Olson D.B. Assessment of excess nitrate development in the subtropical North Atlantic[J]. Marine Chemistry, 2007, 106(3-4):562-579.
DOI: 10.1016/j.marchem.2007.06.005
Google Scholar
[2]
Alvarez M., Alvarez-Salgado X.A. Biogeochemical budgets in the eastern boundary current system of the North Atlantic: Evidence of net heterotrophy and nitrogen fixation[J]. Limnology and Oceanography, 2007, 52(4):1328-1335.
DOI: 10.4319/lo.2007.52.4.1328
Google Scholar
[3]
Dugdale R.C. Nitrogen fixation in the Sargasso Sea[J]. Deep Sea Research, 1961, 7:298-300.
DOI: 10.1016/0146-6313(61)90051-x
Google Scholar
[4]
Zhang L., Hurek T. A nifH -based Oligonucleotide Microarray for Functional Diagnostics of Nitrogen-fixing Microorganisms [J]. Microbial Ecology, 2007, 53(3):456-470.
DOI: 10.1007/s00248-006-9126-9
Google Scholar
[5]
Hakanson L., Bryhn A.C. On the issue of limiting nutrient and predictions of cyanobacteria in aquatic systems[J]. Science of The Total Environment, 2007, 379(1):89-108.
DOI: 10.1016/j.scitotenv.2007.03.009
Google Scholar
[6]
Hutchins D.A., Fu F. X. CO2 control of Trichodesmium N-2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry[J]. Limnology and Oceanography, 2007, 52(4):1293-1304.
DOI: 10.4319/lo.2007.52.4.1293
Google Scholar
[7]
Needoba J.A., Foster R. A. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean[J]. Limnology and Oceanography, 2007, 52(4):1317-1327.
DOI: 10.4319/lo.2007.52.4.1317
Google Scholar
[8]
Zech M., Zech R. A 240,000-year stable carbon and nitrogen isotope record from a loess-like palaeosol sequence in the Tumara Valley, Northeast Siberia[J]. Chemical Geology, 2007, 242(3-4):307-318.
DOI: 10.1016/j.chemgeo.2007.04.002
Google Scholar
[9]
Kustka A.E., Carpenter J. Iron and marine nitrogen fixation: progress and future directions[J].Research in Microbiology, 2002, 153(5):255-262.
DOI: 10.1016/s0923-2508(02)01325-6
Google Scholar
[10]
Sanudo-Wilhelmy S.A., Kustka A.B., Gobler C.J. Phosphorus limitation of nitrogen fixation by Trichodesmium in the Central Atlantic Ocean[J]. Nature, 2001, 411:66-69.
DOI: 10.1038/35075041
Google Scholar
[11]
Wyman M., Zehr J.P., Capone D.G. Temporal cariability in nitrogenase gene expression in natural populations of the marine cyanobacterium Trichodesmium thiebautii[J]. Appl Environ Microbiol, 1996, 62:1073-1075.
DOI: 10.1128/aem.62.3.1073-1075.1996
Google Scholar
[12]
Paerl H.W., Prufert-Bebout L.E., Guo C. Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp.[J]. Appl Environ Microbiol, 1994, 60:1044-1047.
DOI: 10.1128/aem.60.3.1044-1047.1994
Google Scholar
[13]
Raymond N.S. Elevated consumption of carbon relative to nitrogen in the surface Ocean[J]. Nature, 1993, 363:248-249.
Google Scholar
[14]
A. Zheng, M. Chen , E. Lv. The effect of nitrogen, phosphorus and iron in marine colloids on the growth of micro-algae [J]. Advance of Nature Science. 14(3), 2004, 339-343.
Google Scholar
[15]
Mills M.M., Ridame C. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic[J]. Nature, 2005, 435(7039):232-232.
DOI: 10.1038/nature03632
Google Scholar
[16]
Karl D.M. Dinitrogen fixation in the world's oceans[J]. Biogeochemistry, 2002, 57/58: 47-98.
Google Scholar
[17]
Deutsch C., Sarmiento J.L. Spatial coupling of nitrogen inputs and losses in the ocean[J]. Nature, 2007, 445(7124):163-167.
DOI: 10.1038/nature05392
Google Scholar