Aerobic Degradation of Nitrobenzene by Immobilization of Streptomyces albidoflavus in Polyurethane Foam

Article Preview

Abstract:

Streptomyces albidoflavus Z2 was immobilized in polyurethane foam and its ability to degrade nitrobenzene was investigated. Batch experiments showed that polyurethane-foam-immobilized cells (PFIC) possessed a higher degradation capacity. Compared to freely suspended cells (FSC), PFIC degraded nitrobenzene more efficiently under alkali and acid conditions, as well as higher temperature. Kinetic of nitrobenzene degradation by PFIC was well described by Andrews inhibition equation, which demonstrated that PFIC tolerated higher concentration of nitrobenzene than FSC and degraded nitrobenzene at a quicker speed. Moreover, in the presence of NaCl (≤7%, w/v), phenol (≤250 mg L-1) and aniline (100 mg L-1), respectively, PFIC exhibited better tolerance toward salinity and toxic chemicals than FSC. Therefore immobilization could be a promising method for treating nitrobenzene industrial wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

1845-1852

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Ye, A. Singh, O.P. Ward, Biodegradation of nitroaromatics and other nitrogen-containing xenbiotics. World J. Microbiol. Biotech.Vol.20 (2004), p.117.

Google Scholar

[2] H.L. Li, Y. Cheng, H.F. Wang, H.F. Sun, Y.F. Liu, K.X. Liu, S.X. Peng, Inhibition of nitrobenzene-induced DNA and hemolglobin adductions by dietary constituents. Appl. Radia. Isot.Vol.58 (2003), p.1131.

DOI: 10.1016/s0969-8043(02)00315-9

Google Scholar

[3] Z.Q. He, J.C. Spain, Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl. Environ. Microbiol.Vol. 63 (1997), p.4839.

DOI: 10.1128/aem.63.12.4839-4843.1997

Google Scholar

[4] S.F. Nishino, J.C. Spain, Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. Strain JS 765. Appl. Environ. Microbiol.Vol. 61 (1995), p . 2308.

DOI: 10.1128/aem.61.6.2308-2313.1995

Google Scholar

[5] D. Olaf, H. Wolfgang, K. Hans-Joachim, Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation Vol.4 (1993), p.187.

DOI: 10.1007/bf00695121

Google Scholar

[6] W. Chaohai, H. Yi, R. Yuan, X. Bo, W. Chaofei, Bio-cooperation effect and mixing substrates in the aerobic degradation of nitrobenzene. China Environmental Science Vol.20 (2000) p.241.

Google Scholar

[7] S.F. Nishino, J.C. Spain, Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. Vol. 59 (1993), p.2520.

DOI: 10.1128/aem.59.8.2520-2525.1993

Google Scholar

[8] Z. Xuecai, X. Meihong, L. Li, G. Yunhua, C. Mingqiang, W. Jianbo, Study on degradation of several poisonous pollutions in environmental laccase from white rot fungus. Chemistry & Bioengineering Vol. 23 (2006),p.40.

Google Scholar

[9] L. Haiyan, H. Yan, A. Lichao, Study of treatment technology of wastewater containing nitrobenzene compounds. Industrial Water Treatment Vol.26 (2006), p.40.

Google Scholar

[10] C.L. Zheng, B.C. Qu, J. Wang, J.T. Zhou, J. Wang, H. Lu, Isolation and characterization of a novel nitrobenzene degrading bacterium with high salinity tolerance: Micrococcus luteus. J. Hazard. Mater. Vol. 165 (2009), p.1152.

DOI: 10.1016/j.jhazmat.2008.10.119

Google Scholar

[11] C.L. Zheng, J.T. Zhou, J. Wang, J. Wang, B.C. Qu, Isolation and characterization of a nitrobenzene degrading yeast strain from activated sludge. J. Hazard. Mater. Vol. 160 (2008), p.194.

Google Scholar

[12] C.L. Zheng, J.T. Zhou, J. Wang, B.C. Qu, H. Lu, H.X. Zhao, Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam. J. Hazard. Mater. Vol. 168 (2009), p.298.

DOI: 10.1016/j.jhazmat.2009.02.029

Google Scholar

[13] J. Wang, H. Yang, H. Lu, J.T. Zhou, J. Wang, C.L. Zheng, Aerobic degradation of nitrobenzene by a defined microbial consortium immobilization in polyurethane foam. World J. Microbiol. Biotechnol. Vol. 25 (2009), p.875.

DOI: 10.1007/s11274-009-9962-0

Google Scholar

[14] J.L. Wang, X.C. Quan, L.P. Han, Y. Qian, H. Werner, Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res. Vol. 36 (2002), p.2288.

DOI: 10.1016/s0043-1354(01)00457-2

Google Scholar

[15] S. Manohar, C.K. Kim, T.B. Karegoudar, Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl. Microbiol. Biotechnol.Vol. 55 (2001), p.311.

DOI: 10.1007/s002530000488

Google Scholar

[16] K.T. Oreilly, R.L. Crawford, Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl. Environ. Microbiol. Vol. 55 (1989), p.213.

DOI: 10.1128/aem.55.9.2113-2118.1989

Google Scholar

[17] Y. S. Oh, J. Maeng, S.J. Kim, Use of microorganism-immobilized polyurethane foams to absorb and degraded oil on water surface. Appl. Microbiol. Biotechnol. Vol. 54 (2000), p.418.

DOI: 10.1007/s002530000384

Google Scholar

[18] C.L. Zheng, J.T. Zhou, L.H. Zhao, H. Lu, B.C. Qu, J. Wang, Isolation and characterization of a nitrobenzene degrading Streptomyces strain from activated sludge. Bull. Evniron. Contam. Toxicol. Vol. 78 (2006), p.163.

DOI: 10.1007/s00128-007-9031-z

Google Scholar

[19] F.A. Momani, Impact of photo-oxidation technology on the aqueous solutions of nitrobenzene: degradation efficiency and biodegradability enhancement. J. Photoch. Photobil. A Vol. 179 (2006), p.184.

DOI: 10.1016/j.jphotochem.2005.08.015

Google Scholar

[20] M.E. Acuña-Argüelles, P. Olguin-Lora, E. Razo-Flore, Toxicity and kinetic parameters of the aerobic biodegradation of the phenol and alkylphenols by a mixed culture. Biotechnol. Lett. Vol. 25 (2003), p.559.

DOI: 10.1023/a:1022898321664

Google Scholar

[21] C.R. Woolard, R. Irvine, Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res. Vol. 29 (1995), p.1159.

DOI: 10.1016/0043-1354(94)00239-4

Google Scholar