Parameter Inversion of Tritium Migration Based on Parallel Genetic Algorithm

Article Preview

Abstract:

To calibrate model parameters of tritium migration in a test site of China, an intelligent parameter inversion model based on parallel genetic algorithm is built, a forward and inverse coupling program of radionuclide migration is designed, and the values of key parameters like hydraulic conductivity, dispersity and porosity are inverted automatically on a mainframe computer, by means of abundant observation data of tritium concentration. The inversion results accord with observation data well on the whole. Compared to manual adjustment method, this method has better overall convergence, higher calculated precision and efficiency, and less manpower cost. The results show that parallel genetic algorithm is feasible and valid in application to parameter inversion of tritium migration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

1883-1888

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.B. Kersting: Nature. Vol. 397(1999), p.56

Google Scholar

[2] J. Li, Q. Qian, S. Luo, W. Zhou and P. Yi: Chinese Journal of Rock Mechanics and Engineering. Vol. 23(2004), p.736 (in Chinese)

Google Scholar

[3] J.L. Thomphson: Radiochimica Acta. Vol. 54(1990), p.149

Google Scholar

[4] A. Bonton, C. Bouchard, A. Rouleau, M.J. Rodriguez and R. Therrien: Journal of Contaminant Hydrology. Vol. 128(2012), p.1

Google Scholar

[5] Z.X. Dai, J. Samper, A. Wolfsberg and D. Levitt: Physics and Chemistry of the Earth. Vol. 33(2008), p. S177

Google Scholar

[6] W.W. Yeh: Water Resource Research. Vol. 22(1986), p.95

Google Scholar

[7] E.R. Banta, M.C. Hill, E. Poeter, J.E. Doherty and J. Babendreier: Computers & Geosciences. Vol. 34(2008), p.310

DOI: 10.1016/j.cageo.2007.03.016

Google Scholar

[8] G.Zyvoloski: Journal of Contaminant Hydrology. Vol. 62(2003), p.731

Google Scholar

[9] Z.X. Dai and J. Samper: Journal of Hydrology. Vol. 327(2006), p.447

Google Scholar

[10] J. Samper, L. Zheng, A.M. Fernandez and L. Montenegro: Journal of Contaminant Hydrology, Vol. 98(2008), p.115

Google Scholar

[11] T.S. Metcalfe and P. Charbonneau: Journal of Computational Physics, Vol. 185(2003), p.176

Google Scholar

[12] Y.X. Zu, J. Zhou and C.C. Zeng: Chin. Phys. B. Vol. 19(2010), p.119501

Google Scholar

[13] T.T. Wang, W.L. Li, Z.H. Chen and L. Miao: Chin. Phys. B. Vol. 7(2010), p.076401

Google Scholar

[14] J. Wang, Z. Zhou, Y. Huang and H. Zhou: Hydrology. Vol. 22(2002), p.9 (in Chinese)

Google Scholar

[15] X. Liu, Z.L. An and L.P. Zheng: Journal of System Simulation, Vol. 16(2004), p.1938 (in Chinese)

Google Scholar

[16] Y. Cao, W.K. Wang, T.L. Wang, F. Liu and Y.J. Wang: Nuclear Technology. Vol. 35(2012), p.1200 (in Chinese)

Google Scholar