Treatment of Refinery Wastewater with Isolated Biological Aerated Filters: A Pilot-Scale Study

Article Preview

Abstract:

A pilot scale biochemical treatment system containing three isolated biological aerated filters, one oil-separation pool and one secondary sedimentation tank was set up and used for high concentration organic waste water treatment. Effect of different operating conditions on Chemical Oxygen Demand (CODCr), sulphides, hydroxybenzene and oil degradation was investigated. And the ways of sulphides removal were also explored. While CODCr, the concentrations of sulphides, hydroxybenzene and oil in the waste water are no more than 1500 mg/L, 800 mg/L, 15 mg/L and 150mg/L, respectively, the system can run stably and the total removal of these pollutants is 88.8%, 98.8%, 96.8% and 91.0% accordingly though hydraulic retention time (HRT) varies from 7.95 hr to 15.90 hr and the air/water volume ratio (AWVR) varies from 12 to 8. Most of the sulphides are removed by Biodegradation with Isolated Biological Aerated Filters. Most of the pollutants are removed in the 1st BAF and about 96.5% by mean value of sulphides transforme into elemental sulfur and only about 2.7% by mean value of sulphides transforme into sulphates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

2332-2341

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Sang, Z. Wang, China Water & Wastewater. 2003, 19 (2) : 21-23.

Google Scholar

[2] G. Huang, F. Meng, X. Zheng, et al, Appl Microbiol Biotechno. 2011, 90(5): 1795-1803. DOI: 10.1007/s00253-011 -3251-1.

Google Scholar

[3] W. S. Chang , S. W. Hong, J.. Park, Process Biochem. 2002 , 37: 693-698.

DOI: 10.1016/S0032-9592(01)00258-8

Google Scholar

[4] X. Zhao, Y. Wang, Z. Ye, et al, Process Biochem. 2006, 41:1475-1483.

Google Scholar

[5] Su Delin, Cong Li, Wang Jianlong, et al, Int. J. Environment and Pollution, 2009, 38(2): 69-80.

Google Scholar

[6] Y. Wu, S. Zhou, X. Ye, et al, Process Saf. Environ. Prot. 2011, 89(2): 112-120.

DOI: 10.1016/j.psep.2010.10.005

Google Scholar

[7] H. D. Ryu, J. H. Kang, S. I. Lee, Environmental Engineering Science. 2009, 26 (8):1349-1357.

DOI: 10.1089/ees.2009.0016

Google Scholar

[8] H. D. Ryu, D. Kim, H. E. Lim, et al, Process Biochem. 2008, 43 (7): 729-735. DOI: 10.1016/j.procbio. 2008.02.018.

Google Scholar

[9] H. D. Ryu, S. I. Lee, Environmental engineering science. 2009, 26 (1) : 163-170

DOI: 10.1089/ees.2007.0256

Google Scholar

[10] L. Zhong, S. Peng, J. Chen, Chemical Industry and Engineering Progress, 2005, 24(9):1050-1053

Google Scholar

[11] W. Xie, L. Zhong, Journal of South China University of Technology (Natural Science Edition), 2007, 35(6): 127-132. DOI: 1000-565X(2007)06-0127-06

Google Scholar

[12] W. Xie, L. Zhong, J. Chen, et al, Journal of Chemical Engineering of Chinese Universities, 2008, 22(3): 484-490. DOI: 1003-9015(2008)03 -0484-07

Google Scholar

[13] W. Xie, J. Chen, L. Zhong , Journal of Chemical Industry and Engineering(China), 2008, 59(5): 1251-1256.

Google Scholar

[14] R. Pujol, S. Tarallo, Water Sci. Technol. 2000, 41(4-5): 65-68.

Google Scholar

[15] R. Pujol, Water Res. 2000, 32(1):25-29.

Google Scholar

[16] C. J. N. Buisman, B. G. Geraats, P. Ijspeert, et al, Biotech Bioeng, 1990, 35: 50-56.

DOI: 10.1002/bit.260350108

Google Scholar

[17] J. Zuo, L.Yuan, J. Hu, et al, Chinese Journal of Envuronmental Science, 1995, 16(6):7-10.

Google Scholar

[18] J. G. Kuenen, Plant Soil, 1975, 43: 49-76.

DOI: 10.1007/BF01928476

Google Scholar