[1]
Allison, S.D., Hanson, C.A. and Treseder, K.K.,. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. Vol.39( 2007),P.281-293
DOI: 10.1016/j.soilbio.2007.02.001
Google Scholar
[2]
Schulze. E.-D and Freer-Smith P.H., An evaluation of forest decline based on field observations focused on Norway spruce. Picea shies. Proc. R. Sot. Edinburgh B. Vol. 97,(1991),P.155-168.
DOI: 10.1017/s0269727000005339
Google Scholar
[3]
Van Breemen, N.. Driscolf. C.T. and Mulder, J. The role of acidic deposition and internal proton sources in acidification of soils and waters. Nature,Vol.307. (1984),P.599-604.
DOI: 10.1038/307599a0
Google Scholar
[4]
Jackson L E, Martin B, and Cavagnaro T R, Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology. Vol.59(2008),P. 341-363.
DOI: 10.1146/annurev.arplant.59.032607.092932
Google Scholar
[5]
Richardson A E, Barea J M, McNeill A M and Claire P C, Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil. Vol.321 No.1-2 (2009),P.305-3-39.
DOI: 10.1007/s11104-009-9895-2
Google Scholar
[6]
Zakarauskaite, D., Vaišvila, Z., Motuzas, A., Grigaliūnienė, K., Buivydaitė, V. V., Vaisvalavičius, R. & Butkus, V. The influence of long-term application of mineral fertilizers on the biological activity of Cambisols.Ekologija.Vol.54 (2008),P.173-178.
DOI: 10.2478/v10055-008-0027-8
Google Scholar
[7]
Yuan L. Huang J G. and Yu S Q, Responses of nitrogen and related enzyme activities to fertilization in the rhizosphere of wheat. Pedosphere. Vol.7 No.2 (1997), P.141-148.
Google Scholar
[8]
Balezentiene L and Klimas E, Effect of organic and mineral fertilizers and land management on soil enzyme activities. Agronomy Research. 7 (Special issue I): (2009),P.191-197.
Google Scholar
[9]
Abaye, D.A and Brookes, P.C., Relative importance of substrate type and previous soil management in synthesis of microbial biomass and substrate mineralization. Eur. J.Soil Sci. Vol.57(2006),P.179-189.
DOI: 10.1111/j.1365-2389.2005.00727.x
Google Scholar
[10]
Haider, K., Biochemie des Bodens. Ferdinand Enke Verlag, Stuttgart, (1996), P.174.
Google Scholar
[11]
Kuzyakov, Y and Jones, D.L., Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology and Biochemistry.Vol.38(2006), P.851-860.
DOI: 10.1016/j.soilbio.2005.07.012
Google Scholar
[12]
Dakora, F.D and Phillips, D.A., Root exudates as mediators of mineral acquisition in low- nutrient environments. Plant and Soil. Vol.245 (2002),P.37-47.
DOI: 10.1007/978-94-017-1570-6_23
Google Scholar
[13]
Kuzyakov, Y., Raskatov, A.V. and Kaupenjohann, M., Turnover and distribution of root exudates of Zea mays. Plant and Soil. Vol.254 No.2(2003),P.317-327.
DOI: 10.1023/a:1025515708093
Google Scholar
[14]
Herman D J, Johnson K K, Jaeger C H, Schwartz, E. and Firestone, M. K. Root influence on nitrogen mineralization and nitrification in avena barbata rhizosphere. Soil Sci Soc. Am. J. Vol.70 (2006),P.1504-1511.
DOI: 10.2136/sssaj2005.0113
Google Scholar
[15]
Xiong Z Q, Huang T Q, Ma Y C, Xing G X and Zhu Z L. Nitrate and ammonium leaching in variable- and permanent-charge paddy soils. Pedosphere.Vol.20 No.2 (2010),P.209-216.
DOI: 10.1016/s1002-0160(10)60008-2
Google Scholar
[16]
Du Z Y and Zhou J M, Movement of potassium in fertilizer micrsites in red earth. Acta pedologica sinica (in Chinese). Vol.42 No.6 ( 2005),P.1035-1039.
Google Scholar
[17]
Du Z Y, Zhou J M, Wang H Y, Du C W and Chen X Q, Movement and transformation of Potassium in fertilizer microsites in fluvo-aquic soil. Journal of soil and water conservation(in Chinese). Vol.23 No.2 (2009),P.202-205.
Google Scholar
[18]
Fan M X and MacKenzie A F, Interaction of urea with triple superphosphate in a simulated fertilizer band. Fert . Res.Vol.36(1993),P.35-44
DOI: 10.1007/bf00749946
Google Scholar
[19]
Keeney D R and Bremner J M. Comparison and evaluation of laboratorymethods of obtaining an index of soil nitrogen availability. Agronomy Journal.Vol. 58 (1966),P.498-503.
DOI: 10.2134/agronj1966.00021962005800050013x
Google Scholar
[20]
Schinner F and Öhlinger R. Methods in Soil Biology. Springer–Verlag, Berlin, Heidelberg, (1995) P.93-97.
Google Scholar
[21]
Nannipieri, P, Kandeler, E. & Ruggiero, P. Enzymes activities as indicators of soil microbial functional diversity. In Dick, R. (ed.): Enzymes in the environment: activity, ecology and applications. CSIC, Granada, Spain. (2000) P.13.
Google Scholar
[22]
Murphy D V, Macdonald A J, Stockdale E A, Goulding K W T, Fortune S and Gaunt J L, Poulton P R, Wakefield J A, Webster C, Wilmer W S. Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils.Vol.30 (2000),P.374 -387.
DOI: 10.1007/s003740050018
Google Scholar
[23]
Visser S and Parkinson D, Soil biological criteria as indicator of soil quality: soil microorganisms. American Journd of Alternative Agriculture.Vol.7 (1992), P.33-37.
DOI: 10.1017/s0889189300004434
Google Scholar
[24]
Kozdroj J and van Elsas J D,. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural app roaches. Soil Biology and B iochemistry. Vol.32 No.10 ( 2000),P.1405-1417.
DOI: 10.1016/s0038-0717(00)00058-4
Google Scholar
[25]
Diamantidis G, Effosse A, Potier P and Bally R, Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azosprillum lipoferum. Soil Biology and Biochem istry.Vol.32 No.7 (2000),P.919-927.
DOI: 10.1016/s0038-0717(99)00221-7
Google Scholar
[26]
Cheng H and Cao Z, Size and activity of the soil microbial biomass and soil enzyme activity in long-term field experiment. World J. of Agric. Sci.. Vol.3 No.1 ( 2007),P. 67-70.
Google Scholar
[27]
Gao R and Lu J L,. Study on the enzyme activities and fertility change of soils by a long-term located utilization of different fertilizers, Journal of Eco-Agriculture( in Chinese).Vol.13 No.1 (2005),P.143-145.
Google Scholar
[28]
Sun R L, Zhao B Q, Zhu L S, Xu J and Zhang F D, Effects of long-term fertilization on soil enzyme activities and its role in adjusting controlling soil fertility. Plant Nutrition and Fertilizer Science( in Chinese). Vol.9 No.4 (2003),P.406-410
Google Scholar
[29]
Lalfakzualaet R, Kayang H and Dkhar M S, The effects of fertilizers on soil microbial components and chemical peoperties under leguminous cultivation. American-Eurasian J Agric. & Environ. Sci.Vol.3 No.3 (2008),P.314-324.
Google Scholar
[30]
Saha, S., Prakash, V., Kundu, S., Kumar, N. and Mina, B.L., Soil enzymatic activity as affected by long-term application of farmyard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. Eur. J. Soil Biol. Vol.44 No.3 (2008),P.309-315.
DOI: 10.1016/j.ejsobi.2008.02.004
Google Scholar
[31]
Li, J., Zhao, B., L.I, X., Jiang, R. & Bing, H. S. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agric. Sc.( in Chinese). Vol.7 (2008),P.336-343.
DOI: 10.1016/s1671-2927(08)60074-7
Google Scholar
[32]
Benitez, E., Melgar, R., Sainz, H., Gomez, M. and Nogales, R., Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.) grown with olive cake mulches. Soil Biol. Biochem. Vol.32 (2000),P.1829-1835.
DOI: 10.1016/s0038-0717(00)00156-5
Google Scholar