Synthesis of Organic-Intercalated Zn/Fe Layered Double Hydroxides from the Electroplating Wastewater

Article Preview

Abstract:

A series of dodecyl sulfate (DS-) intercalated Zn/Fe layered double hydroxides (DS-Zn/Fe-LDHs) were prepared by co-precipitation method from the electroplating wastewater containing high concentration of zinc (Zn2+). In addition, the influences of their charge density on the interlayer structure of LDHs were investigated by XRD and FT-IR. The removal rate of Zn2+ in the electroplating wastewater was reached 99.9%. The charge density decreased with the increasing of the ratio of Zn/Fe. The results showed that with the increase of the charge density, the interlamellar spacing of organic-LDH increased. The synthesis product was applied in the sorption of organic contaminant ( nitrobenzene ) and the sorption mechanism was partition. The synthetic DS-Zn/Fe LDHs were good sorbents for organic contaminant.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 610-613)

Pages:

538-541

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[1] L. Latterini, M. Nocchetti and U. Costantino: Inorg. Chim. Acta Vol. 360 (2007), p.728.

Google Scholar

[2] L. Latterini, M. Nocchetti and G.G. Aloisi: Langmuir Vol. 23 (2007), p.12337.

Google Scholar

[3] U. Costantino, F. Montanari and M. Nocchetti: J. Mater. Chem. Vol. 17 (2007), p.1079.

Google Scholar

[4] U. Costantino, M. Nocchetti and M. Sisani: Vol. 224 (2009), p.273.

Google Scholar

[5] M. Turco, G. Bagnasco and U. Costantino: J. Catal. Vol. 228 (2004), p.43.

Google Scholar

[6] T. Montanari, M. Sisani and M. Nocchetti: Catal. Today Vol. 152 (2010), p.104.

Google Scholar

[7] C.G. Silva, Y. Bouizi and V. Fornes: J. Am. Chem. Soc. Vol. 131 (2009), p.13833.

Google Scholar

[8] G. Busca, U. Costantino and T. Montanari: Int. J. Hydrogen Energy Vol. 35 (2010), p.5356.

Google Scholar

[9] J.H. Yang, Y.S. Han and M. Park: Chem. Mater. Vol. 19 (2007), p.2679.

Google Scholar

[10] U. Costantino, V. Ambrogi and M. Nocchetti: Micropor. Mesopor. Mat. Vol. 107 (2008), p.149.

Google Scholar

[11] M.I. Carretero, G. Lagaly: Appl. Clay Sci. Vol. 36 (2007), p.149.

Google Scholar

[12] L. Perioli, T. Posati and M. Nocchetti: Apply Clay Sci. Vol. 53 (2011), p.374.

Google Scholar

[13] Dekany, I.: Colloid Polym Sci Vol. 275 (1997), p.681.

Google Scholar

[14] Esumi, K. and Yamamoto, S.: Colloid Surface A Vol. 137 (1998), p.385.

Google Scholar

[15] Bruna, F.: Appl Clay Sci Vol. 33 (2006), p.116.

Google Scholar

[16] Chaara, D.: J Hazard Mater, Vol. 196 (2011), p.350.

Google Scholar

[17] Bouraada, M.: J Hazard Mater vol. 153(2008), p.911.

Google Scholar

[18] Cui, G.J.: Ind Eng Chem Res Vol. 49 (2010), p.448.

Google Scholar