[1]
Prabha Kundur. Power system stability and control. Beijing: China Electric Power Publishing House, 2002. (In Chinese)
Google Scholar
[2]
Yixin Ni .Dynamic power system theory and analysis. Beijing: Tsinghua University Press, 2002:260-291.( In Chinese)
Google Scholar
[3]
T. Hashiguchi, M. Watanabe, A. Matsushita, Y.Mitani, O. Saeki, K. Tsuji, M. Hojo, and H. Ukai, Identification of Characterization Factor for Power System Oscillation Based on Multiple Synchronized Phasor Measurements , Electrical Engineering in Japan, vol. 163, No. 3, pp.10-18, 2008.
DOI: 10.1002/eej.20316
Google Scholar
[4]
C. Li, K. Higuma, M. Watanabe, Y. Mitani: "Monitoring and Estimation of Interarea Power Oscillation Mode Based on Application of CampusWAMS", Proceeding CD of 16th Power System Computation Conference, Glasgow (2008)
DOI: 10.1109/ipecon.2010.5697043
Google Scholar
[5]
Xianda Zhang. Modern Signal Processing .Beijing: Tsinghua University Press,2002. ( In Chinese)
Google Scholar
[6]
J. F. Hauer. Application of prony analysis to the determination of modal content and equivalent models for measured power system response [J]. IEEE Trans. Power System, Vol.6, No.3, pp.1062-1068, Aug. 1991.
DOI: 10.1109/59.119247
Google Scholar
[7]
D.J. Trudnowski, J.M. Johnson, J.F. Hauer. Making Prony analysis more accurate using multiple signals [J].IEEE Trans. Power System, Vol,14, No.1, pp.226-231, 1999.
DOI: 10.1109/59.744537
Google Scholar
[8]
J.J. Sanchez-Gasca, J.H. Chow, Performance comparison of three identification methods for the analysis of electromechanical oscillation. IEEE Trans [J]. Power System, Vol.14, No.3, pp.995-1002, 1999.
DOI: 10.1109/59.780912
Google Scholar
[9]
J. Xiao, X. Xie, Y. Han, and J. Wu, Dynamic tracking of low-frequency oscillations with improved prony method in wide-area measurement system[J].in Proc. IEEE Power Eng. Soc. General Meeting, 2004, pp.1104-1109, Jun. 2004.
DOI: 10.1109/pes.2004.1373012
Google Scholar
[10]
B.A. Archer, U.D. Annakkage. Monitoring and predicting power system behavior by tracking dominant modes of oscillation [J].in Proceedings of the IEEE PES General Meeting, Vol.2, pp.1475-1482, 2005.
DOI: 10.1109/pes.2005.1489139
Google Scholar
[11]
Shuqing Zhang, Xiaorong Xie, Jingtao Wu. WAMS-based detection and early-warning of low-frequency oscillations in large-scale power systems[J].Electric Power Systems Research, Vol.78, No.5, pp.897-906, May 2008.
DOI: 10.1016/j.epsr.2007.06.008
Google Scholar
[12]
Kumaresan R, Tufts D W, Scharf L L. A prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models [J].Proc IEEE, 1984,72(2): 230-233.
DOI: 10.1109/proc.1984.12849
Google Scholar
[13]
XiaoJinYu, XieXiaoRong, HuZhiXiang, etc.Improved Prony method of online identification of power system low frequency oscillation.Journal of tsinghua university (natural science edition), 2004, 44(7):883-887.
Google Scholar
[14]
PIERRE J W,TRUDNOWSKI D J,DONNELLY M K.Initial re-sults in electromechanical mode identification from ambient data[J].IEEE Trans on Power Systems,1997,12(3):1245-1251.
DOI: 10.1109/59.630467
Google Scholar
[15]
WIES R W,PIERRE J W,TRUNDNOWSKI D J.Use of ARMA block processing for estimating stationary low-frequency elec-tromechanical modes of power systems[J].IEEE Trans on Power Systems,2003,18(1):167-173.
DOI: 10.1109/tpwrs.2002.807116
Google Scholar
[16]
WIES R W,PIERRE J W.Use of Least-Mean Squares(LMS)adaptive filtering technique for estimating low-frequency elec-tromechanical modes in power systems[C].roceedings of the American Control Conference.Alaska,USA:ACC,2002:4867-4873.
DOI: 10.1109/acc.2002.1025429
Google Scholar
[17]
WIES R W,BALASUBRAMANIAN A,PIERRE J W.Using Adaptive Step-size Least Mean Squares(ASLMS)for estimatinglow-frequency electromechanical modes in power systems[C]. Proceedings of 9th International conference on probabilisticmethods applied to power systems.Stockholm, Sweden:PMAPSInternational Society,2006:1-8.
DOI: 10.1109/pmaps.2006.360409
Google Scholar
[18]
ZHOU N,PIERRE J W,TRUDNOWSKI D J,etc.Robust RLS method for online estimation of power system electromechanical modes[J].IEEE Trans on Power Systems,2007,22(3):1240-1249.
DOI: 10.1109/tpwrs.2007.901104
Google Scholar
[19]
Chen Gang, DuanXiao, etc.Low frequency oscillation modes online identification technology research based on ARMA model[J].Power System Technology ,2010,34(11). ( In Chinese)
Google Scholar
[20]
Van Overschee Peter,DeMoorBart. Subspace algorithms for the stochastic identification problem[C].The IEEE Conference on Decision and Control,Brighton,England:1991.
DOI: 10.1109/cdc.1991.261604
Google Scholar
[21]
Ghasemi H,Canizares C,Moshref A.Oscillatory stability limit prediction using stochastic subspace identification[J].IEEE Trans on Power Systems,2006,21(2):736-745.
DOI: 10.1109/tpwrs.2006.873100
Google Scholar
[22]
Chen Zhuo.Application of operational modal analysis in the identification of low-frequency oscillation[J].Power System Protection and Control ,2009,37(8):34-37. ( In Chinese)
Google Scholar
[23]
Guowei Cai,Deyou Yang, etc.Power system low frequency oscillation mode identification based on the measured signal[J].Power System Technology,2011,35(1).
Google Scholar
[24]
Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis[J]. Proceedings of the Royal Society of London, 1998(454): 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[25]
HuangNE,Shen,LongSR. A new wiew of nonlinear water waves:The Hilert spectrum. Annu.Rev.Fluid Mech, 1999,31:417-457.
Google Scholar
[26]
Yang Shixi, Hu Jinsong.Rotating machinery vibration signals based on frequency analysis of EMD Hilbert transform and wavelet transform[J].Proceedings of the CSEE,2003,23(6):102-107. ( In Chinese)
Google Scholar
[27]
Tianyun Li , Gao Lei, etc.Synchronous motor parameters identification based on HHT[J]. Proceedings of the CSEE,26,26(8):153-158. ( In Chinese)
Google Scholar
[28]
DeChang Yang,C.Rehtanz,etc.Power system low-frequency oscillation analysis based on improved Hilbert - Huang transform algorithm [J].Proceedings of the CSEE,31(10). ( In Chinese)
Google Scholar
[29]
Han Song, Liquan He, etc. Nonstationary and nonlinear analysis and its applications of power system low-frequency oscillation based on Hilbert - Huang transform [J].Power System Technology, 2008, 32(4). ( In Chinese)
Google Scholar