Optimal Wind&Coal Plant Capacity Distribution among the Sending&Receiving Nodes Based on Quantum PSO Algorithm

Article Preview

Abstract:

This paper established the comprehensive optimal objective function considering the construction cost, operation cost and the peak regulation capacity limitation to optimize capacity allocation of wind and coal power ,according to the peak regulation capacity limitation. Based on construction cost and the limitation of peak regulation capacity, the objective function reflects the essence of the transportation of wind and coal power thoroughly. A quantum particle swarm optimization (QPSO) algorithm was put forward to solve the objective function. The algorithm takes advantage of its probability expression and superposition state, which potentially improves the searching ability. Besides, mutation operation of QPSO helps maintain population diversity. The analysis of result proves scientificity and feasibility of proposed model and algorithm in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 614-615)

Pages:

1019-1026

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.-Z. Lei, Automation of Electric Power Systems, vol.27,no.8, 2003,pp.84-89,in press.

Google Scholar

[2] N.-B.Wang,K.Ding, J.Zhi, Electric Power Technology,vol.19,no.13, 2010,pp.1-4.

Google Scholar

[3] Z.-H.Chen, Y.-H.Chen, Z.Xing , Automation of Electric Power Systems, vol.35,no.21, 2011,pp.12-15.

Google Scholar

[4] J.-H.Bai,S.-X.Xin,J.-D.Xiang, Power System and Clean Energy,vol.26,no.1 2010,p.14-17K.

Google Scholar

[5] D.-J.Chen,Q.-W.Gong,M.-LZhang, Proceendings of the CSEE, vol.31,no.13, 2011,pp.10-17.

Google Scholar

[6] K.Tian,M.Zeng,Y.Fan, Power System Technoligy,vol.35,no.6,2011,pp.55-59.

Google Scholar

[7] L.Zhi, X.-S.Han,Y.Ming, Automation of Electric Power Systemsvol.34,no.19,2010,pp.15-19.

Google Scholar

[8] Y.-T.Jiang, Q.Chao,T.-R.Xun,Y.B, Power System Technoligy, vol.33,no.6,2009,pp.67-71.

Google Scholar

[9] Y.Yao,Y.-J.Lai, Automation of Electric Power System,vol.35,no.22,2011,pp.118-124

Google Scholar

[10] C.-X.Wang,Y.Qiao,Z.-X.Lu, Automation of Electric Power Systems,vol.36,no.4, 2012,pp.16-21.

Google Scholar

[11] Z.Bin,L.Dong, Proceedings of the CSEE, vol.32,no.7, 2012,pp.23-32

Google Scholar

[12] L.-Y.Zhou,W.-S.Wang,Y.Hua, Power System Technology,vol.26,no.5,2002,pp.10-14.

Google Scholar

[13] S.Wei,W.-W.Chuan, B.-M.Zhang, Automation of Electric Power Systems,vol. 35,no.22, 2011,pp.136-140.

Google Scholar

[14] L.-Z.Zhang,N.Zhou,N.Wang, Automation of Electric Power Systems, vol.35,no.22, 2011,pp.105-110.

Google Scholar

[15] K.Wang, B.-H.Zhang,Y.Zhou, Automation of Electric Power Systems,2011,vol.35,no.22,pp.141-146.

Google Scholar

[16] S.-Y.Li, P.-C.Li, Harbin:Harbin Institute of Technology Press,2009,pp.101-117(In Chinese).

Google Scholar

[17] Kennedy,Eberhart R, Proceedings of IEEE Conference on Neural Networks,Perth,Australia:IEEE.1995,pp.1942-1948.

Google Scholar

[18] Z.F. Liu, Tianjin:Tianjin University,2005(In Chinese).

Google Scholar