Study on Gas/particle Flows in a Down-Fired Boiler with Swirl Burners: Influence of Different Outer Secondary Air Vane Angle

Article Preview

Abstract:

The gas-solid multi-phase flow is measured in a 300MW down-fired bolier cold model with swirl burners by two-dimensional phase Doppler velocimetry(PDA), concluded the influence of different outer secondary air vane angles on the multi-phase flow characteristics in the furnace. For vane angles of 25°, the vertical direction average velocity is high and fluctuating velocity is low, the reach of the downward airflow is deeper, primary air and secondary air mix slowly, the horizontal direction average velocity is high and fluctuating velocity is low, solid phased particles spread slowly and mix with the rewind air weakly, this is against to the ignition of pulverized coal. For vane angles of 35°, the vertical direction average velocity decrease and decay faster, fluctuating velocity increase slightly, the horizontal direction average velocity and fluctuating velocity increased slightly, solid phased particles spread quickly and mixed with the rewind air quickly, the ignition of pulverized coal increase. For vane angles of 55°, the recirculation zone appear in the burner nozzle region, the vertical direction fluctuating velocity increase significantly, average velocity decrease and decay quickly, the downward airflow turn upwards before mixing with gas, the horizontal direction average velocity high and fluctuating velocity is higher, solid phased particles spread more quickly, mixed with the rewind air more quickly, this will erode the water wall and throat, cause the water wall slagging. Considering various factors, the best outer secondary air vane angle is 35° in the operation of boiler.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 614-615)

Pages:

149-156

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.G. Zhou, T.M. Xu, S.E. Hui and M.C. Zhang: Applied Thermal Engineering 29 (2009), P. 732.

Google Scholar

[2] Y.Q. Li and H.C. Zhou: Flow Measurement and Instrumentation 17 (2006), P. 113.

Google Scholar

[3] B.S. He, M.Q. Chen, S.M. Liu, et al.: Experimental Thermal and Fluid Science 29 (2005), P. 537.

Google Scholar

[4] Y.G. Zhou, M.C. Zhang, T.M. Xu and S.E. Hui: Energy & Fuels 23 (2009), P. 5375.

Google Scholar

[5] Z.C. Lin, W.D. Fan, Y.Y. Li, Y.H. Li and M.C. Zhang: Energy & Fuels 23 (2009), P. 744.

Google Scholar

[6] F. Ren, Z.Q. Li, Z.C. Chen, J.J. Wang and Z. Chen: Energy & Fuels 23 (2009), P. 2437.

Google Scholar

[7] F. Ren, Z.Q. Li, Y.B. Zhang, S.Z. Sun, X.H. Zhang, et al.: Energy & Fuels 21 (2007), P. 668.

Google Scholar

[8] Z.Q. Li, M. Kuang, J. Zhang, Y.F. Han, Q.Y. Zhu, et al.: Energy & Fuels 44 (2010), P. 1130.

Google Scholar

[9] J.R. Fan, J. Jin, X.H. Liang, L.H. Chen, et al.: Chemical Engineering Journal 71 (1998), P. 233.

Google Scholar

[10] J.R. Fan, X.D. Zha and K.F. Cen: Energy & Fuels 15 (2001), P. 776.

Google Scholar

[11] S.B. Fan, Z.Q. Li, X.H. Yang, G.K. Liu, Z.C. Chen: Fuel 89 (2010), P. 1525.

Google Scholar

[12] Z.Q. Li, S.B. Fan, G.K. Liu, X.H. Yang, et al.: Energy & Fuels 24 (2010), P. 38.

Google Scholar

[13] S.B. Fan, Z.Q. Li, W. Su, Z.C. Chen and Y.K. Qin: Energy & Fuels 24 (2010), P. 3884.

Google Scholar

[14] D. Eskin: Chemical Engineering Science 60 (2005), P. 655.

Google Scholar

[15] L. Marko, M. Pasi, A. Ville and A. Juhani: Chemical Engineering Science 62 (2007), P. 721.

Google Scholar

[16] K.E. Morud and B.H. Hjertager: Chemical Engineering Science 51 (1996), P. 233.

Google Scholar

[17] Z.Q. Li, R. Sun, L.Z. Chen, Z.X. Wan, et al.: Fuel 81 (2002), P. 829.

Google Scholar

[18] Z.Q. Li, R. Sun, Z.X. Wan, S.Z. Sun, et al.: Combust. Sci. Technol. 175 (2003), P. 1979.

Google Scholar

[19] Z.Q. Li, Z.C. Chen, R. Sun and S.H. Wu: J. Energy Inst. 80 (2007), P. 123.

Google Scholar

[20] J.R. Fan, J.M. Shi, Y.Q. Zheng and K.F. Cen: Chem. Eng. J. 66 (1997), P. 201.

Google Scholar

[21] Z.C. Chen, Z.Q. Li, F.Q. Wang, J.P. Jing, et al.: Fuel 87 (2008), P. 2102.

Google Scholar

[22] Z.C. Chen, Z.Q. Li, J.P. Jing, F.Q. Wang, et al.: Fuel Process. Technol. 89 (2008), P. 958.

Google Scholar