Effect of the Deposition Time on LSCF–SDC Carbonate Thin Film Formation by the Electrophoretic Deposition Method

Article Preview

Abstract:

La0.6Sr0.4Co0.2Fe0.8O3-δ–samarium-doped ceria (SDC) carbonate thin films are produced on SDC carbonate substrates by the electrophoretic deposition (EPD) method. EPD is performed by fixing the voltage and suspension pH while varying the deposition time to obtain a >20 μm-thick layer. The deposition time of 30 min yields more particle deposits than 10, 15, 20, and 25 min. Thin films with an average thickness of 22.9050 μm are obtained from the EPD technique when the voltage is 20 V and the suspension pH is 5.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 616-618)

Pages:

1813-1818

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Besra & M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52 (2007), pp.1-61.

DOI: 10.1016/j.pmatsci.2006.07.001

Google Scholar

[2] I. Zhitomirsky & A. Petric. Electrophoretic deposition of ceramic materials for fuel cell applications. Journal of the European Ceramic Society 20 (2000), p.2055 – 2061.

DOI: 10.1016/s0955-2219(00)00098-4

Google Scholar

[3] P. Sarkar & P.S. Nicholson. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of American Ceramic Society 79 (1996), p.1987 – 2002.

DOI: 10.1111/j.1151-2916.1996.tb08929.x

Google Scholar

[4] M. Mishra, S. Bhattacharjee, L. Besra, H.S. Sharma, T. Uchikoshi & Y. Sakka. Effect of pH localization on microstructure evolution of deposits during aqueous electrophoretic deposition (EPD). Journal of the European Ceramic Society 30 (2010), p.2467–2473.

DOI: 10.1016/j.jeurceramsoc.2010.04.034

Google Scholar

[5] M. Asamoto, S. Miyaki, Y. Yonei, H. Yamaura & H. Yahiro. Electrochemical performance of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques. Electrochemistry 77 2 (2010), p.143 – 145.

DOI: 10.5796/electrochemistry.77.143

Google Scholar

[6] M.J. Santillan, A. Caneiro, N. Quaranta & A.R. Boccaccini. Electrophoretic deposition of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of the European Ceramic Society 29 (2009), p.1125 – 1132.

DOI: 10.1016/j.jeurceramsoc.2008.07.057

Google Scholar

[7] J.S. Cherng, J.R. Sau & C.C. Chung. Aqueous electrophoteric deposition of YSZ electrolyte layers for solid oxide fuel cells. Journal of Solid State Electrochemistry 12 (2008), p.925 – 933.

DOI: 10.1007/s10008-007-0458-2

Google Scholar

[8] J. Zhao, X. Wang & L. Li. Electrophoretic deposition of BaTiO3 films from aqueous suspensions. Materials Chemistry and Physics 99 (2006), p.350 – 353.

DOI: 10.1016/j.matchemphys.2005.11.003

Google Scholar

[9] Y. Sakka & T. Uchikoshi. Forming and microstructure control of ceramics by electrophoretic deposition (EPD). KONA Powder and Particle Journal 28 (2010), pp.74-90.

DOI: 10.14356/kona.2010009

Google Scholar

[10] R.N. Basu, C.A. Randall & M.J. Mayo. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of the American Ceramic Society 84 (2001), p.33–40.

DOI: 10.1111/j.1151-2916.2001.tb00604.x

Google Scholar

[11] Y.C. Wang, I.C. Leu & M.H. Hon. Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings. Journal of the American Ceramic Society 87 (2004), pp.84-88.

DOI: 10.1111/j.1551-2916.2004.00084.x

Google Scholar

[12] Hamimah A.R., Andanastuti, M., Norhamidi, M. & Huda, A. LSCF Layer On SDC Substrate By Aqueous Electrophoretic Deposition. In Proceeding of The 3rd International Conference on Fuel Cell & Hydrogen Technology (ICFCHT), 22-23 Nov 2011, Kuala Lumpur, Malaysia (2011).

Google Scholar

[13] Hamimah A.R., Andanastuti, M., Norhamidi, M. & Huda, A. Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3-δ–SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Ceramics International 38 (2012), p.1571–1576.

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[14] Zunic, M., et al., Electrophoretic deposition of dense BaCe0.9Y0.1O3−x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources. 190(2009): pp.417-422.

DOI: 10.1016/j.jpowsour.2009.01.046

Google Scholar