[1]
L. Besra & M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52 (2007), pp.1-61.
DOI: 10.1016/j.pmatsci.2006.07.001
Google Scholar
[2]
I. Zhitomirsky & A. Petric. Electrophoretic deposition of ceramic materials for fuel cell applications. Journal of the European Ceramic Society 20 (2000), p.2055 – 2061.
DOI: 10.1016/s0955-2219(00)00098-4
Google Scholar
[3]
P. Sarkar & P.S. Nicholson. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of American Ceramic Society 79 (1996), p.1987 – 2002.
DOI: 10.1111/j.1151-2916.1996.tb08929.x
Google Scholar
[4]
M. Mishra, S. Bhattacharjee, L. Besra, H.S. Sharma, T. Uchikoshi & Y. Sakka. Effect of pH localization on microstructure evolution of deposits during aqueous electrophoretic deposition (EPD). Journal of the European Ceramic Society 30 (2010), p.2467–2473.
DOI: 10.1016/j.jeurceramsoc.2010.04.034
Google Scholar
[5]
M. Asamoto, S. Miyaki, Y. Yonei, H. Yamaura & H. Yahiro. Electrochemical performance of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques. Electrochemistry 77 2 (2010), p.143 – 145.
DOI: 10.5796/electrochemistry.77.143
Google Scholar
[6]
M.J. Santillan, A. Caneiro, N. Quaranta & A.R. Boccaccini. Electrophoretic deposition of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of the European Ceramic Society 29 (2009), p.1125 – 1132.
DOI: 10.1016/j.jeurceramsoc.2008.07.057
Google Scholar
[7]
J.S. Cherng, J.R. Sau & C.C. Chung. Aqueous electrophoteric deposition of YSZ electrolyte layers for solid oxide fuel cells. Journal of Solid State Electrochemistry 12 (2008), p.925 – 933.
DOI: 10.1007/s10008-007-0458-2
Google Scholar
[8]
J. Zhao, X. Wang & L. Li. Electrophoretic deposition of BaTiO3 films from aqueous suspensions. Materials Chemistry and Physics 99 (2006), p.350 – 353.
DOI: 10.1016/j.matchemphys.2005.11.003
Google Scholar
[9]
Y. Sakka & T. Uchikoshi. Forming and microstructure control of ceramics by electrophoretic deposition (EPD). KONA Powder and Particle Journal 28 (2010), pp.74-90.
DOI: 10.14356/kona.2010009
Google Scholar
[10]
R.N. Basu, C.A. Randall & M.J. Mayo. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of the American Ceramic Society 84 (2001), p.33–40.
DOI: 10.1111/j.1151-2916.2001.tb00604.x
Google Scholar
[11]
Y.C. Wang, I.C. Leu & M.H. Hon. Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings. Journal of the American Ceramic Society 87 (2004), pp.84-88.
DOI: 10.1111/j.1551-2916.2004.00084.x
Google Scholar
[12]
Hamimah A.R., Andanastuti, M., Norhamidi, M. & Huda, A. LSCF Layer On SDC Substrate By Aqueous Electrophoretic Deposition. In Proceeding of The 3rd International Conference on Fuel Cell & Hydrogen Technology (ICFCHT), 22-23 Nov 2011, Kuala Lumpur, Malaysia (2011).
Google Scholar
[13]
Hamimah A.R., Andanastuti, M., Norhamidi, M. & Huda, A. Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3-δ–SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Ceramics International 38 (2012), p.1571–1576.
DOI: 10.1016/j.ceramint.2011.09.043
Google Scholar
[14]
Zunic, M., et al., Electrophoretic deposition of dense BaCe0.9Y0.1O3−x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources. 190(2009): pp.417-422.
DOI: 10.1016/j.jpowsour.2009.01.046
Google Scholar