[1]
Hyeong-Yeon Lee , Se-Hwan Lee, Jong-Bum Kim etc. Creep–fatigue damage for a structure with dissimilar metal welds of modified 9Cr–1Mo steel and 316L stainless steel[J]. International Journal of Fatigue ,29 (2007) 1868–1879.
DOI: 10.1016/j.ijfatigue.2007.02.009
Google Scholar
[2]
N. Le Mat Hamata, I. A. Shibli. Creep crack growth of seam-welded P22 and P91 pipes with artificial defects. Part I: Experimental study and post-test metallography[J]. International Journal of Pressure Vessels and Piping, 78 (2001) 819-826.
DOI: 10.1016/s0308-0161(01)00096-5
Google Scholar
[3]
N. Le Mat Hamata, I. A. Shibli. Creep crack growth of seam-welded P22 and P91 pipes with artificial defects. Part II: data Analysis[J]. International Journal of Pressure Vessels and Piping, 78 (2001) 827-835.
DOI: 10.1016/s0308-0161(01)00097-7
Google Scholar
[4]
Hao Yu-long. Research on the creep characteristic and creep-fatigue interaction for P91 steel[D]. Southwest Jiaotong University, 2005,4.
Google Scholar
[5]
Wei Feng. Research on damage model of creep-fatigue interaction and life accessment for P91 steel[D]. Southwest Jiaotong University, 2006.
Google Scholar
[6]
J. Granacher A. Klenk, M.Tramer, G.Schellenberg etc. creep fatigue crack behavior of two power plant steels[J]. International Journal of pressure vessel and piping, 78 (2009) 909-920.
DOI: 10.1016/s0308-0161(01)00106-5
Google Scholar
[7]
B. Fournier, M. Sauzay, C. Ca¨es etc. Creep–fatigue- oxidation interactions in a 9Cr–1Mo martensitic steel .Part I: Effect of tensile holding period on fatigue lifetime[J]. International Journal of Fatigue, 30 (2008) 649–662.
DOI: 10.1016/j.ijfatigue.2007.05.007
Google Scholar
[8]
B. Fournier, M. Sauzay, C. Ca¨es etc. Creep–fatigue -oxidation interactions in a 9Cr–1Mo martensitic steel . Part II: Study of the influence of creep and stress relaxation holding times on cyclic behaviour[J].International Journal of Fatigue,30 (2008) 663–676.
DOI: 10.1016/j.ijfatigue.2007.05.008
Google Scholar
[9]
B. Fournier, M. Sauzay, C. Ca¨es etc. Creep–fatigue -oxidation interactions in a 9Cr–1Mo martensitic steel . Part III: Lifetime prediction[J]. International Journal of Fatigue, 30 (2008) 1797–1812.
DOI: 10.1016/j.ijfatigue.2008.02.006
Google Scholar
[10]
B. Fournier, M. Sauzay, C. Ca¨es etc. High temperature creep–fatigue–oxidation interactions in 9–12%Cr martensitic steels[J]. Journal of Nuclear Materials. (2009) 418–421.
DOI: 10.1016/j.jnucmat.2008.12.139
Google Scholar
[11]
B. Fournier, M. Sauzay, C. Ca¨es etc. Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part I. Mechanical Test Results[J]. Metallurgical and materials transactions A, 40 (2009) 321-329.
DOI: 10.1007/s11661-008-9686-z
Google Scholar
[12]
Yukio Takahashi. Study on creep-fatigue evaluation procedures for high-chromium steels—Part I: Test results and life prediction based on measured stress relaxation[J]. International Journal of Pressure Vessels and Piping, 85 (2008) 406–422.
DOI: 10.1016/j.ijpvp.2007.11.008
Google Scholar
[13]
Yukio Takahashi. Study on creep-fatigue evaluation procedures for high chromium steels—Part II: Sensitivity to calculated deformation[J].International Journal of Pressure Vessels and Piping, 85 (2008) 423–440.
DOI: 10.1016/j.ijpvp.2007.11.006
Google Scholar