Microwave Assisted Hydrothermal Synthesis and Characterization of N, S Co-Doped ZnO Photocatalyst

Article Preview

Abstract:

The N, S codoped ZnO was synthesized by microwave assisted hydrothermal method. The N, S codoping narrowed the band gap of ZnO (formed impurity states in the band gap), hence shift light response to range of visible light. Furthermore, the doped ZnO exhibits significantly higher photocatalytic activity than that of pure ZnO for degradation of reactive brilliant blue KN-R aqueous solution under simulative solar irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 616-618)

Pages:

1841-1844

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Wan, T.H. Wang, J.C. Zhao, Enhanced photocatalytic activity of ZnO nanotetrapods, Appl. Phys. Lett. 87 (2005) 083105-083105-3.

DOI: 10.1063/1.2034092

Google Scholar

[2] S. Cho, J.W. Jang, J.S. Lee, K.H. Lee, Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis, Cryst. Eng. Comm. 12 (2010) 3929-3935.

DOI: 10.1039/c0ce00063a

Google Scholar

[3] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[4] R. Slama, F. Ghribi, A. Houas, C. Barthou, L.E. Mir, Photocatalytic and optical properties of vanadium doped zinc oxide nanoparticles, International J. Nanoelectron. Mater. 3 (2010) 133-142.

DOI: 10.1016/j.tsf.2010.12.197

Google Scholar

[5] D. Li, H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition, J. Photochem. Photobiol. A: Chem. 155 (2003) 171-178.

DOI: 10.1016/s1010-6030(02)00371-4

Google Scholar

[6] H. Wang, Z. Wu, Y. Liu, A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres, J. Phys. Chem. C 113 (2009) 13317-13324.

DOI: 10.1021/jp9047693

Google Scholar

[7] C.S. Gopinath, S.G. Hegde, A.V. Ramaswamy, S. Mahapatra, Photoemission studies of polymorphic CaCO3 materials, Mater. Res. Bull. 37 (2002) 1323-1332.

DOI: 10.1016/s0025-5408(02)00763-8

Google Scholar

[8] E. Papirer, R. Lacroix, J.B. Donnet, G. Nanse, P. Fioux, XPS study of the halogenation of carbon black—Part 2. Chlorination, Carbon 33 (1995) 63-72.

DOI: 10.1016/0008-6223(94)00111-c

Google Scholar

[9] J.S. Jang, C. J. Yu, S.H. Choi, S.M. Ji, E.S. Kim, J.S. Lee, Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity, J. Catal. 254 (2008) 144-155.

DOI: 10.1016/j.jcat.2007.12.010

Google Scholar

[10] J.G. Ma, Y.C. Liu, R. Mu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties, J. Vac. Sci. Technol. B 22 (2004) 94-98.

DOI: 10.1116/1.1641057

Google Scholar

[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[12] K. Merritt, R.S. Wortman, M. Millard, S.A. Brown, XPS analysis of 316 LVM corroded in serum and saline, Biomater, Med. Devices Artif. Org. 11 (1983) 115-124.

DOI: 10.3109/10731198309118800

Google Scholar

[13] J.C. Yu, W.K. Ho, J.G. Yu, H. Yip, P.K. Wong, J.C. Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol. 39 (2005) 1175-1179.

DOI: 10.1021/es035374h

Google Scholar