Fabrication of ZrO2 :Er3+ Nanocrystals and the Researching of Emitting Mechanism

Article Preview

Abstract:

Erbium doped ZrO2 (ZrO2:Er3+) nanocrystals are fabricated by a butadinol low thermal crystallization method.The emitting mechanism of Er3+ is researched. Er3+ level of the stark split were calculated with the crystals field theory, and the two levels of the spectral lines have been further recognition. It can be indicated that 980nm stimulates Er3+ upconverting. One process is continuous absorption of two 980nm photons. Another is electronic transfer to metastability level after absorbing 980 nm photons, then reuptake 980 nm photons.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 616-618)

Pages:

1882-1888

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] George C. Valley, Optical Fiber Technology, 2001, 7, 21-44.

Google Scholar

[2] Matsuura, Daisuke, Hattori, Hideshi, Takano, and Atsushi, Journal of the Electrochemical Society, 2005, 152, 39-42.

Google Scholar

[3] Vetrone, Fiorenzo, Boyer, John-Christopher, Capobianco, John A, Speghini, Adolfo, Bettinelli, and Marco, Journal of Applied Physics, 2004, 96, 661-667.

DOI: 10.1063/1.1739523

Google Scholar

[4] R. Sam Niedbala; Hans Feindt;Keith Kardos; Timothy Vail;Jarrett Burton; Barbara ka;ShangLi; David Milunic;Peter Bourdelle; Remo Vallejo, Analytical Biochemistry,2001, 293, 22–30.

DOI: 10.1006/abio.2001.5105

Google Scholar

[5] Silver, J., Martinez-Rubio, M. I., Ireland, T. G., Fern, G. R., and Withnall, R., Journal of Physical Chemistry B, 2003, 107, 1548-1553

Google Scholar

[6] Vetrone Fiorenzo, Boyer, J. Christopher, Capobianco, John A., Speghini, Adolfo, Bettinelli, and Marco, Journal of Physical Chemistry B, 2003, 107, 1107-1112

Google Scholar

[7] Van de Rijke F; Zijlmans H; Li S; Vail T; Raap AK; Niedbala RS; Tanke HJ, Nature Biotechnology, 2001, 19(3), 273-276.

DOI: 10.1038/85734

Google Scholar

[8] Hirai, Takayuki, Orikoshi, Takuya, Komasawa, and Isao, Chemistry of Materials, 2002, 144,3576-3583.

Google Scholar

[9] J.A. Capobianco; F. Vetrone; T. D'Alesio; G. Tessari; A. Speghini; M. Bettinelli, Phys. Chem. Chem. Phys., 2000, 2, 3203-3207.

DOI: 10.1039/b003031g

Google Scholar

[10] Capobianco, J. A.; Boyer, J. C.; Vetrone, F.; Speghini, A.; Bettinelli, M, Chemistry of Materials, 2002, 14, 2915-2921John A. Capobianco; Fiorenzo Vetrone; J. Christopher Boyer, J. Phys. Chem. B, 2002, 106, 1181-1187.

DOI: 10.1016/s0925-3467(01)00188-4

Google Scholar

[11] Fiorenzo Vetrone; John-Christopher Boyer; John A. Capobianco; Adolfo Speghini; Marco Bettinelli, Chem. Mater, 2003, 15, 2737-2743.

Google Scholar

[12] Fiorenzo Vetrone; J. Christopher Boyer; John A. Capobianco, J. Phys. Chem. B, 2002, 106, 5622-5628.

Google Scholar

[13] Kapoor, Rakesh; Friend, Christopher S.; Biswas, Abani; Prasad, Paras N., Optics Letters, 2000, 25, 338-340.

Google Scholar

[14] J. Silver; M. I. Martinez-Rubio; T. G. Ireland; G. R. Fern, R. Withnall, J. Phys. Chem. B, 2001, 105, 9107-9112.

Google Scholar

[15] Paul L.A.M. Corstjens; Michel Zuiderwijk; Mats Nilsson; Hans Feindt; R. Sam Niedbala; Hans J. Tanke, Analytical Biochemistry,2003, 312, 191–200.

DOI: 10.1016/s0003-2697(02)00505-5

Google Scholar

[16] Bohé, A. E.; Andrade-Gamboa, J.; Pasquevich, D. M.; Tolley, A. J.; Pelegrina, J. L. J. Am. Ceram. Soc. 2000, 83(4), 755-760.

Google Scholar

[17] Corstjens P, Zuiderwijk M; Brink A, Li S, Feindt H; Neidbala RS, and Tanke H, Clinical Chemistry, 2001, 47(10), 1885-1893.

Google Scholar

[18] Ruokun Jia; Wensheng Yang; Yubai Bai; Tiejin Li, Optical Materials, 2006 , 28, 246-249

Google Scholar

[19] Setsuhisa Tanabe; Hideaki Hayashi; Teiichi Hanada; Noriaki Onodera, Optical Materials, 2002, 19, 343-349.

Google Scholar