[1]
Iyer R R, Grossmann I E. Optimal multiperiod operational planning for utility systems[J]. Computers & Chemical Engineering, 1997, 21(8): 787-800.
DOI: 10.1016/s0098-1354(96)00317-1
Google Scholar
[2]
Maia L O A, Vidal de Carvalho L A, Oassim R Y. Synthesis of utility systems by simulated annealing[J]. Computers & Chemical Engineering, 1995, 19(4): 481-488.
DOI: 10.1016/0098-1354(94)00061-r
Google Scholar
[3]
Iyer R R, Grossmann I E. Synthesis and operational planning of utility systems for multiperiod operation[J]. Computers & Chemical Engineering, 1998, 22(7-8): 979-993.
DOI: 10.1016/s0098-1354(97)00270-6
Google Scholar
[4]
Oliveira Francisco A P, Matos H A. Multiperiod synthesis and operational planning of utility systems with environmental concerns[J]. Computers and Chemical Engineering, 2004, 28(5): 745-753.
DOI: 10.1016/j.compchemeng.2004.02.025
Google Scholar
[5]
Shang Z, Kokossis A. A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation[J]. Computers & Chemical Engineering, 2004, 28(9): 1673-1688.
DOI: 10.1016/j.compchemeng.2004.01.010
Google Scholar
[6]
Dai W Z, Yin H C, Chi X. Optimal multiperiod operational planning of steam power systems using an improved particle swarm optimization method[J]. CIESC Journal, 2009, 60(1): 112-117.
Google Scholar
[7]
Dai W Z, Yin H C, Lam W H. Optimal multi-period operational planning for steam power system in petrochemical enterprise with consideration of environmental costs in China[J]. Canadian Journal of Chemical Engineering, 2011, 89(Compendex): 337-344.
DOI: 10.1002/cjce.20394
Google Scholar
[8]
Ding C G. Industrial boiler facilities. Beijing: China Machine Press; (2005).
Google Scholar