Discovery of WO3/TiO2 Nanostructure Transformation by Controlling Content of NH4F to Enhance Photoelectrochemical Response

Article Preview

Abstract:

We report on the effect of the tungsten (W) cathode in controlling the morphology and properties of titanium (Ti) anodic oxide layer via an electrochemical anodization process. The content of ammonium fluoride (NH4F) was varied in ethylene glycol (EG) electrolyte containing hydrogen peroxide (H2O2) in order to obtained the high ordered nanotubular structure. When amount of NH4F was upto 5 wt%, highly ordered WO3-TiO2 nanotubes structure was observed. If insufficient amount of NH4F is applied, the nanoporous structure will be favored. Highly ordered WO3-TiO2 nanotubes structure exhibited higher photocurrent density ( 0.9 mA/cm2) as compared to the WO3-TiO2 nanoporous structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-178

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. Vol. 50 (2011), p.2904.

Google Scholar

[2] V.K. Mahajan, S.K. Mohapatra, and M. Misra, Int. J. Hydrogen Energ. Vol. 33 (2008), p.5369.

Google Scholar

[3] C.W. Lai, and S. Sreekantan, J. Nanomater. Vol. 2011 (2011), Article ID 142463.

Google Scholar

[4] W.K. Ho, J.C. Yu, and S.C. Lee, Chem. Commum. Vol. 111 (2006), p.1115.

Google Scholar

[5] Y. Xie, L. Zhou, J. Lu, J. Mater. Sci. Vol. 44 (2009), p.2907.

Google Scholar

[6] K.S. Ahn, S.H. Lee, A.C. Dillon, C.E. Tracy, and R. Pitts, J. Appl. Phys. Vol. 101 (2007), Article ID 093524.

Google Scholar

[7] B.L. Zhu, Z.M. Sui, S.R. Wang, X. Chen, S.M. Zhang, S.H. Wu, and W.P. Huang, Mater. Res. Bull. Vol. 41 (2006), p.1097.

Google Scholar

[8] C. Das I. Paramasivam, N. Liu, and P. Schmuki, Electrochim. Acta Vol. 56 (2011), p.10557.

Google Scholar

[9] J. L Zhang, Y. M Wu, M. Y Xing, S.A.K. Leghari, and S. Sajjad, Energy Environ. Sci. Vol. 3 (2010), p.715.

Google Scholar

[10] M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy, Renew. Sust. Energ. Rev. Vol. 11 (2007), p.401.

Google Scholar

[11] Y.T. Kwon, K.Y. Song, W.I. Lee, G.J. Choi, and Y.R. Do, J. Catal. Vol. 191 (2000), p.192.

Google Scholar

[12] M. Fernandez-Garcia, A. Martinez-Arias, A. Fuerte, and J.C. Conesa, J. Phys. Chem. B Vol. 109 (2005), p.6075.

Google Scholar

[13] A.K.L. Sajjad, S. Shamaila, B.Z. Tian, F. Chen, and J.L. Zhang, Appl. Catal. B-Environ. Vol. 91 (2009), p.397.

Google Scholar

[14] M.W. Xiao, L.S. Wang, X.J. Huang, Y.D. Wu, and Z. Dang, J. Alloys Compd. Vol. 470 (2009), p.486.

Google Scholar

[15] N.K. Allam, and C.A. Grimes, Sol. Energ. Mat. Sol. C. Vol. 92 (2008), p.1468.

Google Scholar

[16] S. Sreekantan, C.W. Lai, and Z. Lockman, J. Electrochem. Soc. Vol. 158 (2011), p.397.

Google Scholar

[17] H.J. Kim, and K.H. Lee, Electrochem. Solid-state Lett. Vol. 12 (2009), pp.10-12.

Google Scholar

[18] S. Ismail, Z.A. Ahmad, A. Berenov, and Z. Lockman, Corros. Sci. Vol. 53 (2011), p.1156.

Google Scholar

[19] H. Yang, and C. Pan, J. Alloy. Compd. Vol. 492 (2010), p.33.

Google Scholar

[20] C.C. Chen, and S.J. Hsieh, J. Electrochem. Soc. Vol. 157 (2010), p.125.

Google Scholar

[21] J.M. Macak, H. Hildebrand, U. Marten-Jahns, and P. Schmuki, J. Electroanal. Chem. Vol. 621 (2008), p.254.

Google Scholar

[22] S. Komornicki, M. Radecka, and P. Sobas, Mater. Res. Bull. Vol. 39 (2004), p. (2007).

Google Scholar

[23] S.A.K. Leghari, S. Sajjad, F. Chen, and J. Zhang, Chem. Eng. J. Vol. 166 (2011), p.906.

Google Scholar

[24] D.S. Kim, J.H. Yang, S. Balaji, H.J. Cho, M.K. Kim, D.U. Kang, Y. Djaoued, and Y.U. Kwon, Cryst. Eng. Comm. Vol. 11 (2009) p.1621.

Google Scholar

[25] A.M. Marquez, J. J Plata, Y. Ortega, and J.F. Sanz, J. Phys. Chem. C Vol. 115 (2011), p.16970.

Google Scholar

[26] J. Gong, C.Z. Yang, W. Pu, and J. Zhang, Chem. Eng. J. Vol. 167 (2011), p.190.

Google Scholar

[27] N. Couselo, F.S.G. Einschlag, R.J. Candal, and M. Jobbagy, J. Phys. Chem. C Vol. 112 (2008), p.1094.

Google Scholar

[28] S. Higashimoto, Y. Ushiroda, and M. Azuma, Top Catal. Vol. 47 (2008), p.148.

Google Scholar

[29] C.W. Lai, and S. Sreekantan, Optoelectron. Adv. Mat. Vol. 6 (2012), p.82.

Google Scholar

[30] C.W. Lai, and S. Sreekantan, Int. J. Photoenergy Vol. 2012 (2012), Article ID 356943.

Google Scholar

[31] A. Ghicov, and P. Schmuki, Chem. Commum. Vol. 20 (2009), p.2791.

Google Scholar

[32] C.A. Grimes, J. Mater. Chem. Vol. 17 (2007), p.1451.

Google Scholar

[33] C.W. Lai, and S. Sreekantan, J. Nanosci. Nanotechnol. Vol. 12 (2012), p.3170.

Google Scholar

[34] C.W. Lai, S. Sreekantan, and Z. Lockman, J. Nanosci. Nanotechnol. Vol. 12 (2012), p.4057.

Google Scholar

[35] C.W. Lai, and S. Sreekantan, Micro Nano Lett. Vol. 7 (2012), p.443.

Google Scholar

[36] C.W. Lai, S. Sreekantan, and P.S. E, J. Mat. Res. Vol. 27 (2012), p.1695.

Google Scholar