The Effects of Cr2O3 Addition on Fracture Toughness and Phases of ZTA Ceramic Composite

Article Preview

Abstract:

Fracture toughness and phases of ceramic composites produced from alumina, yttria stabilized zirconia and chromia oxide system was investigated. The Cr2O3 weight percent was varied from 0 wt% to 1.0 wt%. Each batch of composition was mixed, uniaxially pressed 13mm diameter and sintered at 1600 C for 4 h in pressureless conditions. Studies on on their mechanical and physical properties such as Vickers hardness and fracture toughness were carried out. Results show that an addition of 0.6 wt% of Cr2O3 produces the best mechanical properties. Results of the highest fracture toughness is 4.73 MPa.m1/2,

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-39

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Like, L. Xikun, Q. Guanming, M. Weimin, S. Yanbin and Y. Huadong: Journal of Rare Earths, Vol. 25 (2007), pp.309-316.

DOI: 10.1016/s1002-0721(07)60493-1

Google Scholar

[2] A.Z.A. Azhar, M.M. Ratnam and Z.A. Ahmad: Journal of Alloys and Compounds Vol. 478 (2009), pp.608-614.

Google Scholar

[3] B. Smuk, M. Szutkowska and J. Walter: Journal of Materials Processing Technology Vol. 133 (2003), pp.195-198.

Google Scholar

[4] A. Gatto: Journal of Materials Processing Technology Vol. 174 (2006), pp.67-73.

Google Scholar

[5] A.K. Dutta, A.B. Chattopadhyaya and K.K. Ray: Wear Vol. 261 (2006), pp.885-895.

Google Scholar

[6] B. Mondal, A.B. Chattopadhyay, A. Virkar and A. Paul: Wear Vol. 156 (1992), pp.365-383.

Google Scholar

[7] D. Casellas, M.M. Nagl, L. Llanes and M. Anglada: Journal of Materials Processing Technology Vol. 143 (2003), pp.148-115.

Google Scholar

[8] N.P. Bansal and S.R. Choi: National Aeronautics and Space Administration John H. Glenn Research Center, Ohio, (2003).

Google Scholar

[9] V. Sergo, V. Lughi, G. Pezzotti, E. Lucchini, S. Meriani, N. Muraki, G. Katagiri, S. Lo Casto and T. Nishida: Wear Vol. 214 (1998), pp.264-270.

DOI: 10.1016/s0043-1648(97)00208-1

Google Scholar

[10] G. Magnani and A. Brillante: Journal of the European Ceramic Society Vol. 25 (2005), pp.3383-3392.

Google Scholar

[11] F. Bondioli, A.M. Ferrari, C. Leonelli, T. Manfredini, L. Linati and P. Mustarelli: Journal of the American Ceramic Society Vol. 83 (2000), p.2036-(2040).

DOI: 10.1111/j.1151-2916.2000.tb01508.x

Google Scholar

[12] L. Zhang, M. Kuhn and U. Diebold: Surface Science Vol. 375 (1997), pp.1-12.

Google Scholar

[13] D. -H. Riu, Y. -M. Kong and H. -E. Kim: Journal of the European Ceramic Society Vol. 20 (2000), pp.1475-1481.

Google Scholar

[14] K. Niihara: Journal of Materials Science Letters Vol. 2 (1983), pp.221-223.

Google Scholar

[15] M.T. Hernandez, M. González and A. De Pablos: Acta Materialia Vol. 51 (2003), pp.217-228.

Google Scholar

[16] T. Hirata, K. Akiyama and H. Yamamoto: Journal of the European Ceramic Society Vol. 20 (2000), pp.195-199.

Google Scholar