Formation of Well Aligned ZnO Nanorods Grown on Silicon Substrate by Chemical Bath Deposition Method

Article Preview

Abstract:

Zinc oxide (ZnO) nanorods have been grown on silicon substrate by chemical bath deposition method in an aqueous solution that contained zinc nitrate hexahydrate and hexamethylenetetramine. The ZnO seed layer was deposited on substrate to promote growth of ZnO nanorods. Growth temperature was varying in order to form well aligned ZnO nanorods From XRD analysis confirmed that grown ZnO nanorods has wurtzite crystal structure and grown in the [10 direction. Well aligned and better size distribution of ZnO nanorods obtained at 75°C for 1h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

356-361

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.L. Wang: Journal of Physics Condensed Matter Vol. 16 (2004), p.829–858.

Google Scholar

[2] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng and L. Luo: Applied Surface Science 242 (2005), pp.212-217.

Google Scholar

[3] X.W. Sun, J.X. Wang and A. Wei: Journal of Materials Science and Technology 24 (2008), pp.649-656.

Google Scholar

[4] M. Krunks, E. Kärber, A. Katerski, K. Otto, I. Oja Acik, T. Dedova and A. Mere: Solar Energy Materials and Solar Cells 94 (2010), pp.1191-1195.

DOI: 10.1016/j.solmat.2010.02.036

Google Scholar

[5] J. Song, Y. He, J. Chen, D. Zhu, Z. Pan, Y. Zhang and J. -A Wang: Journal of Electronic Materials 41 (2012), pp.431-436.

Google Scholar

[6] Y. Zhang, L. Wang, X. Liu, Y. Yan, C. Chen and J. Zhu: Journal of Physical Chemistry B 109 (2005), pp.13091-13093.

Google Scholar

[7] J.W. Park, J.K. Kim and K.Y. Suh: Nanotechnology 17 (2006) 2631-2635.

Google Scholar

[8] Y. Ishikawa, Y. Shimizu, T. Sasaki and N. Koshizaki: Journal of Colloid and Interface Science 300 (2006), pp.612-615.

Google Scholar

[9] V. Prasad, C. D'Souza, D. Yadav, A.J. Shaikh and N. Vigneshwaran: Spectrochimica Acta - Part A 65 (2006), pp.173-178.

Google Scholar

[10] S. P Garcia and S Semancik: Chemistry of Materials 19 (2007), pp.4016-4022.

Google Scholar

[11] S. Dalui, S.N. Das, R.K. Roy, R.N. Gayen and A.K. Pal: Thin Solid Films 516 (2008), pp.8219-8226.

DOI: 10.1016/j.tsf.2008.02.052

Google Scholar

[12] D. Valerini, A.P. Caricato, M. Lomascolo, F. Romano, A. Taurino, T. Tunno and M. Martino: Applied Physics A 93 (2008), pp.729-733.

DOI: 10.1007/s00339-008-4703-z

Google Scholar

[13] L. Wan, J. Zhang, X. Chen, Q. Yan, C. Liu and H. Hou: Journal of Ceramic Processing Research 11 (2010), pp.287-292.

Google Scholar

[14] J-H. Choi, X. You, C. Kim, J. Park and J. J Pak: Journal of Electrical Engineering and Technology 5 (2010), pp.640-645.

Google Scholar

[15] A.N. Red'kin, A.N. Gruzintsev, E.E. Yakimov, O.V. Kononenko and D.V. Roshchupkin: Inorganic Materials 47 (2011), pp.740-745.

Google Scholar

[16] L. -J Chen and Y. -J Chuang: Materials Letters 68 (2012), pp.460-462.

Google Scholar

[17] R. Kitsomboonloha, S. Baruah, M.T. Z Myint, V. Subramanian and J. Dutta: Journal of Crystal Growth 311 (2009), pp.2352-2358.

DOI: 10.1016/j.jcrysgro.2009.02.028

Google Scholar

[18] T. Pauporté: Design of solution-grown ZnO Nanostructures, Lecture Notes in Nanoscale Science and Technology 5 (2009), pp.77-125.

Google Scholar

[19] W. S Rasband: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, (1997).

Google Scholar

[20] S. Baruah and J. Dutta: Journal of Crystal Growth 311 (2009), pp.2549-2554.

Google Scholar

[21] N.J. Nicholas, G.V. Franks and W.A. Ducker: CrystEngComm 14 (2012), pp.1232-1240.

Google Scholar

[22] R.W. Balluffi, S.M. Allen and W.C. Carter: Kinetics of Materials, John Wiley and Sons Inc, (2005).

Google Scholar

[23] Z.N. Urgessa, O.S. Oluwafemi and J.R. Botha: Physica B 407 (2012), pp.1543-1545.

Google Scholar

[24] M. Guo and S. Cai: Journal of Solid State Chemistry 178 (2005), p.1864–1873.

Google Scholar

[25] H. McMurdie, M. Morris, E., Evans, B. Paretzkin, W. Wong-Ng, L. Ettlinger, and C. Hubbard: Powder Diffraction 1 (1986), p.76.

DOI: 10.1017/s0885715600011593

Google Scholar