Characterization of Antibacterial Effects of Novel Silver Nanoparticles: A Case Study on Pseudomonas as a Model for Gram-Negative Bacteria

Article Preview

Abstract:

The antimicrobial effects of silver nanoparticles (Ag-NPs) are well known, but Ag-NPs are known to aggregate in medium of high salt content and lose their antibacterial activity. Graphene-based silver nanoparticles (Ag NPs-GE) materials can form stable dispersion in the aqueous solution. This study explores the antimicrobial effects of Ag NPs-GE in pathogenic bacteria, Pseudomonas aeruginosa. The antimicrobial activity of Ag NPs-GE was investigated in Luria-Bertani (LB) medium on solid agar plates and liquid system supplement with various concentrations of Ag NPs-GE. The Ag NPs-GE were shown to be an effective bactericide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-86

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18 (2007).

DOI: 10.1088/0957-4484/18/22/225103

Google Scholar

[2] P. Li, J. Li, C.Z. Wu, Q.S. Wu, J. Li, Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16 (2005) 1912-(1917).

DOI: 10.1088/0957-4484/16/9/082

Google Scholar

[3] S. Lee, J. Lee, K. Kim, S.J. Sim, M.B. Gu, J. Yi, J. Lee, Eco-toxicity of Commercial Silver Nanopowders to Bacterial and Yeast Strains. Biotechnol Bioproc E 14 (2009) 490-495.

DOI: 10.1007/s12257-008-0254-6

Google Scholar

[4] S. Silver, Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. Fems Microbiol Rev 27 (2003) 341-353.

DOI: 10.1016/s0168-6445(03)00047-0

Google Scholar

[5] H.W. Liang, W.J. Zhang, Y.N. Ma, X. Cao, Q.F. Guan, W.P. Xu, S.H. Yu, Highly Active Carbonaceous Nanofibers: A Versatile Scaffold for Constructing Multifunctional Free-Standing Membranes. Acs Nano 5 (2011) 8148-8161.

DOI: 10.1021/nn202789f

Google Scholar

[6] C.J. Murphy, T.K. San, A.M. Gole, C.J. Orendorff, J.X. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 109 (2005) 13857-13870.

DOI: 10.1021/jp0516846

Google Scholar

[7] O. Akhavan, Graphene Nanomesh by ZnO Nanorod Photocatalysts. Acs Nano 4 (2010) 4174-4180.

DOI: 10.1021/nn1007429

Google Scholar

[8] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438 (2005) 197-200.

DOI: 10.1038/nature04233

Google Scholar

[9] C.G. Giske, D.L. Monnet, O. Cars, Y. Carmeli, R. -A.A. Resistance, Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Ch 52 (2008) 813-821.

DOI: 10.1128/aac.01169-07

Google Scholar

[10] M.G.P. Page, J. Heim, Prospects for the next anti-Pseudomonas drug. Curr Opin Pharmacol 9 (2009) 558-565.

Google Scholar

[11] P.A. Lambert, Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J Roy Soc Med 95 (2002) 22-26.

Google Scholar