Homotopy Continuation Based Non-Divergent Power Flow

Article Preview

Abstract:

This paper presents a non-divergent power flow using homotopy continuation method for power system static analysis. During power flow calculation with newly established network data in power system planning, divergence may occur because of the ill-condition by singularity of power flow Jacobian or bad initial guesses. The application of homotopy continuation method can lead the chosen initial guess to a closer solution to power flow equations in hybrid coordinate successfully and can provide further information on the convergence characteristic. This paper includes an illustrative example certifying the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

1157-1161

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.F. Tinney and C.E. Hart: IEEE Trans. Power App. Syst. Vol. PAS-86 (1967), pp.1449-1460.

Google Scholar

[2] B. Stott: Proc. Inst. Elect. Eng. Vol. 118 (1971), pp.986-987.

Google Scholar

[3] B. Stott: Proc. IEEE Vol. 62 (1974), pp.916-929.

Google Scholar

[4] V. Ajjarapu and C. Christy: IEEE Trans. Power Syst. Vol. 7 (1992), pp.416-423.

Google Scholar

[5] C.A. Cañizares and F.L. Alvarado: IEEE Trans. Power Syst. Vol. 8 (1993), pp.1-8.

Google Scholar

[6] S. Iwamoto and Y. Tamura: IEEE Trans. Power App. Syst. Vol. PAS-100 (1981), pp.1736-1743.

Google Scholar

[7] M. Dehnel and H.W. Dommel: Proc. IEEE PES Summer Meeting Vol. 4 (1989), pp.801-807.

Google Scholar

[8] P. R. Bijwe and S.M. Kelapure: IEEE Trans. Power Syst. Vol. 18 (2003), pp.633-638.

DOI: 10.1109/tpwrs.2003.810905

Google Scholar

[9] F. Milano: IEEE Trans. Power Syst. Vol. 24 (2009), pp.50-57.

Google Scholar

[10] K. Okumura: Proc. IEEE Int'l Symp. Circuits and Syst. Vol. 5 (1991), pp.2897-2899.

Google Scholar

[11] W. C. Rheinboldt: ACM Trans. Math. Soft. Vol. 9 (1983), pp.215-235.

Google Scholar

[12] F.M.A. Salam, L. Ni, S. Guo and X. Sun: Proc. of the 28th Conf. on Decision and Control Vol. 3 (1989), pp.2073-2178.

Google Scholar

[13] L.T. Watson: Journal of Comp. App. Math. Vol. 140 (2002), pp.785-807.

Google Scholar