[1]
K. Prashant. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C, 2007; 111, pp.2834-60.
DOI: 10.1021/jp066952u
Google Scholar
[2]
J. Wang, N. Müller. Performance prediction of array arrangement on ducted Composite Material Marine Current Turbines (CMMCTs). Ocean engineering, Vol 41, (2012).
DOI: 10.1016/j.oceaneng.2011.12.023
Google Scholar
[3]
J. Wang, J. Piechna, N. Müller. A novel design of composite water turbine using CFD. J. Hydrodyn., Vol 4, (2012).
DOI: 10.1016/s1001-6058(11)60213-8
Google Scholar
[4]
C. Colan, I. Dincer, and F. Hamdullahpur. A review on macro-level modeling of planar solid oxide fuel cells. Int. J. Energ. Res. 2008; 32(4): pp.336-55.
DOI: 10.1002/er.1363
Google Scholar
[5]
A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff. Energetic and economic investigation of Organic Rankine Cycle applications. Appl. Therm. Eng. 2009; 29(8-9), pp.1809-17.
DOI: 10.1016/j.applthermaleng.2008.08.016
Google Scholar
[6]
D. Wei, X. Lu, Z. Lu, and J. Gu. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers. Manage. 2007; 48(4), pp.1113-19.
DOI: 10.1016/j.enconman.2006.10.020
Google Scholar
[7]
H. Tuo. Parametric analysis of a reheat carbon dioxide transcritical power cycle using a low temperature heat source. 2nd International Conference on Environmental Engineering and Applications, v. 17, L018(2011).
DOI: 10.1115/imece2011-65000
Google Scholar
[8]
H. Tuo. Thermal-economic analysis of a transcritical Rankine power cycle with reheat enhancement for a low-grade heat source. Int. J. Energ. Res., 2012; [DOI: 10. 1002/er. 2886].
DOI: 10.1002/er.2886
Google Scholar
[9]
A. Akkaya, and B. Sahin. A study on performance of solid oxide fuel cell-organic Rankine cycle combined system. Int. J. Energ. Res. 2009; 33(6): pp.553-64.
DOI: 10.1002/er.1490
Google Scholar
[10]
F. Al-Sulaiman, I. Dincer, and F. Hamdullahpur. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle. Int. J. Hydrogen Energy 2010; 35(10): pp.5104-13.
DOI: 10.1016/j.ijhydene.2009.09.047
Google Scholar
[11]
F. Al-Sulaiman , I. Dincer, and F. Hamdullahpur. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J. Power Sources 2010; 195(8): pp.2346-54.
DOI: 10.1016/j.jpowsour.2009.10.075
Google Scholar
[12]
D. Sanchez, J. Escalona, B. Monje, R. Chacartegui, and T. Sanchez. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle. J. Power Sources 2011; 196(9): pp.4355-63.
DOI: 10.1016/j.jpowsour.2010.07.060
Google Scholar
[13]
Y. Dai, J. Wang, and L. Gao. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers. Manage. 2009; 50(3): pp.576-82.
DOI: 10.1016/j.enconman.2008.10.018
Google Scholar
[14]
U. Drescher, and D. Bruggemann. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng. 2007; 27(1): pp.223-28.
DOI: 10.1016/j.applthermaleng.2006.04.024
Google Scholar
[15]
M. Preibinger, F. Heberle, and D. Bruggemann. Thermaldynamic analysis of double-stage biomass fired Organic Rankine Cycle for micro-cogeneration. Inter. J. Energ. Res. 2012; DOI: 10. 1002/er. (1952).
DOI: 10.1002/er.1952
Google Scholar