Superconducting Properties of Bi1.6Pb0.4Sr2Ca2-xDyxCu3Oy Prepared via Co-Precipitation Method

Article Preview

Abstract:

The samples with nominal composition of Bi1.6Pb0.4Sr2Ca 2-xDyx Cu3Oy where x = 0.000, 0.025, 0.050, 0.100 and 0.200 were prepared by the co-precipitation (COP) method. The samples were characterized by x-ray diffraction, electrical resistivity measurement and critical current density. The critical current density (JC) and superconductivity transition temperature (TC) of Dy substituted were found to be lower than the Dy-free sample. The TC values vary between 100 K and 75 K toward Dy concentration due to a small change of carrier concentration. The highest TC in Dy-doped sample was found at 96 K in x = 0.025. The JC decreased towards Dy substitution, and it was measured to be 5751.2 mA/cm2 in Dy-free and 3769.8 mA/cm2 in x = 0.025 at 77 K. XRD analysis showed the substitutions of Dy reduced the volume fraction of the 2223 phase and increased the volume fraction of the 2212 phase. The proportion of Bi-2223/Bi-2212 (%) were estimated from 76.74/23.26 in Dy free to 18.90/81.10 in x = 0.200.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

177-181

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys. Vol. 27 (1998), p.209.

Google Scholar

[2] I. Hamadneh, S. A. Halim and C. K. Lee: J. Mater. Sci. Vol. 41 (2006), p.5526.

Google Scholar

[3] I. Hamadneh, A. Agil, A. K. Yahya and S. A Halim: Physica C Vol. 463-465 (2007), p.207.

Google Scholar

[4] I. H. Gul, M. A. Rehman, M. Ali and A. Maqsood: Physica C Vol. 432 (2005), p.71.

Google Scholar

[5] P. M. Arun, S. Vinu, R. Shabna, A. Biju and U. Syamaprasad: Mater. Lett. Vol. 62 (2008), p.2725.

Google Scholar

[6] A. Biju, U. Syamaprasad, Ashok Rao, J. G. Xu, K. M. Sivakumar and Y. K. Kuo: Physica C Vol. 466 (2007), pp.69-75.

DOI: 10.1016/j.physc.2007.06.013

Google Scholar

[7] A. Biju, K. Vinod and U. Syamaprasad: Supercond. Sci. Technol. Vol. 19 (2006), p.1083.

Google Scholar

[8] G. Ilonca, A.V. Pop, T. R. Yang, I. Gr. Deac, C. Lung, R. Stiufiuc and G. Stiufiuc: Int. J. Inorg. Mater.: Vol. 3 (2001), p.769.

DOI: 10.1016/s1466-6049(01)00048-4

Google Scholar

[9] A. Sedky: J. of Phys. and Chem. of Sol. Vol. 70 (2009), p.483.

Google Scholar

[10] D. Marconi, G. Stiufiuc and V. P Pop: Journal of Physics: Conference Series 153 (2009).

Google Scholar

[11] B. Pignon, C. Autret-Lambert, A. Ruyter, R. Decourt, J. M. Bassat, I. Monot-Laffez and L. Ammor: Physica C Vo. 341-348 (2000) p.655.

DOI: 10.1016/j.physc.2007.09.014

Google Scholar

[12] O. Ozturk, M. Akdogan, H. Aydin, M. Yilmazlar, C. Terzioglu and I. Belenli: Physica B Vol. 399 (2007), p.94.

DOI: 10.1016/j.physb.2007.05.028

Google Scholar

[13] C. Terzioglu, M. Yilmazlar, O. Ozturk and E. Yanmaz: Physica C Vol. 423 (2005), p.119.

Google Scholar

[14] I.V. Driessche, A. Buekenhoudt, K. Konstantinov, E. Bruneel and S. Hoste: Appl. Supercond. Vol 4 (1996), p.185.

Google Scholar

[15] M.S. Lee and K.Y. Song: Supercond. Sci. Techol Vol. 15 (2002), p.151.

Google Scholar

[16] A. E. White, R. C. Dynes and J. P. Garno: Phys. Rev. B Vol. 33 (1989), p.3549.

Google Scholar

[17] H. M. Jaeger, D. B. Haviland, A. M. Goldman and B.G. Orr: Phys. Rev. B Vol. 34 (1986), p.4920.

Google Scholar

[18] R. K. Nkum: J. Mat. Sci. Vol. 33 (1998), p.207.

Google Scholar