[1]
JQ Su, TW Nelson, R, Mishra M. Mahoney, Micro-structural investigation of friction stir welded 7050-T651 aluminium, Acta Mater 51, (2003) p.713–29.
DOI: 10.1016/s1359-6454(02)00449-4
Google Scholar
[2]
CG Rhodes, MW Mahoney, WH Bingel Effect of friction stir welding on microstructure of 7075 aluminium, Scripta Mater 36, . (1997), p.69–75.
DOI: 10.1016/s1359-6462(96)00344-2
Google Scholar
[3]
Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Mater. Sci. Eng., A, vol. A433, (2006) p.50–54.
DOI: 10.1016/j.msea.2006.06.089
Google Scholar
[4]
CG Rhodes, MW Mahoney, WH Bingel, RA Spurling, and CC Bampton. Effects of friction stir welding on microstructure of 7075 aluminum, ScriptaMaterialia, 36, , (1997), pp.69-75.
DOI: 10.1016/s1359-6462(96)00344-2
Google Scholar
[5]
M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel Properties of friction- stir-welded 7075 T651 aluminum, Metall. Mater. Trans. A, vol. 29A, (1998), p.1955–64.
DOI: 10.1007/s11661-998-0021-5
Google Scholar
[6]
W.M. Thomas, E.D. Nicholas, J.C. Needam, M.G. Murch, P. Templesmith, C.J. Dawes, GB Patent Application No. 9125978. 8, December 1991 and US Patent No. 5460317, (1995).
Google Scholar
[7]
R. John, K.V. Jata, K. Sadananda Residual stress effects on near threshold fatigue crack growth in friction stir welded aerospace alloys, International Journal of Fatigue 25, (2003), p.939–948.
DOI: 10.1016/j.ijfatigue.2003.08.002
Google Scholar
[8]
K.V. Jata, K.K. Sankaran, J. Ruschau Friction stir welding effects on microstructure and fatigue of aluminium alloy 7050-T7451, Metallurgical and Materials Transactions 31A (2000), p.2181–2192.
DOI: 10.1007/s11661-000-0136-9
Google Scholar
[9]
M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, A.C. Nunes, Flow patterns during friction stir welding, Materials Characterization 49 (2003), p.95–101.
DOI: 10.1016/s1044-5803(02)00362-5
Google Scholar
[10]
P. Ulysse Three-dimensional modelling of the friction stir welding process, International Journal of Machine Tools and Manufacture 42 (2002), p.1549–1557.
DOI: 10.1016/s0890-6955(02)00114-1
Google Scholar
[11]
ASTM E8M-04. Standard test methods for tension testing of metallic materials, ASTM International (2006).
Google Scholar
[12]
C. Rhodes, M. Mahoney, W. Bingel, R. Spurling, and W. Bampton Effects of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 36(1), (1997), p.69–75.
DOI: 10.1016/s1359-6462(96)00344-2
Google Scholar
[13]
A. Goloborodko Friction Stir Welding of a Commercial 7075-T6 Aluminum Alloy: Grain Refinement, Thermal Stability and Tensile Properties, Mater. Trans., 45(8), (2004), p.2503–2508.
DOI: 10.2320/matertrans.45.2503
Google Scholar
[14]
O Frigaard, Ø Grong, OT Midling A process model for friction stir welding of age hardening aluminium alloys, Metall Mater Trans A 32, . (2001), p.1189–200.
DOI: 10.1007/s11661-001-0128-4
Google Scholar