[1]
B.A. Goff, J. Blake, M.P. Bamberg and T. Hasan: Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer, (1996) 74(8): pp.1194-8.
DOI: 10.1038/bjc.1996.516
Google Scholar
[2]
R. Ideta, F. Tasaka, W.D. Jang, N. Nishiyama, G.D. Zhang, A. Harada, Y. Yanagi, Y. Tamaki, T. Aida and K. Kataoka: Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett, (2005).
DOI: 10.1021/nl051679d
Google Scholar
[3]
N.S. Soukos, M.R. Hamblin, S. Keel, R.L. Fabian, T.F. Deutsch and T. Hasan: Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res, (2001) 61(11): pp.4490-6.
Google Scholar
[4]
J. Moan and K. Berg: Photochemotherapy of cancer: experimental research. Photochem Photobiol, (1992) 55(6): pp.931-48.
DOI: 10.1111/j.1751-1097.1992.tb08541.x
Google Scholar
[5]
Y.N. Konan, R. Gurny and E. Allemann: State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, (2002) 66(2): pp.89-106.
Google Scholar
[6]
M. Soncin, L. Polo, E. Reddi, G. Jori, M.E. Kenney, G. Cheng and M.A. Rodgers: Effect of the delivery system on the biodistribution of Ge(IV) octabutoxy-phthalocyanines in tumour-bearing mice. Cancer Lett, (1995) 89(1): pp.101-6.
DOI: 10.1016/0304-3835(95)90164-7
Google Scholar
[7]
J. Leroux E. Roux, D. Le Garrec, K. Hong and D.C. Drummond: N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J Control Release, (2001) 72(1-3): pp.71-84.
DOI: 10.1016/s0168-3659(01)00263-2
Google Scholar
[8]
L. Polo, G. Bianco, E. Reddi and G. Jori: The effect of different liposomal formulations on the interaction of Zn (II)- phthalocyanine with isolated low and high density lipoproteins. Int J Biochem Cell Biol, (1995) 27(12): pp.1249-55.
DOI: 10.1016/1357-2725(95)00107-z
Google Scholar
[9]
C.M. Peterson, J.M. Lu, Y. Sun, C.A. Peterson, J.G. Shiah, R.C. Straight and J. Kopecek: Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res, (1996).
DOI: 10.3892/ijo.15.1.5
Google Scholar
[10]
M. Soncin, L. Polo, E. Reddi, G. Jori, B.D. Rihter, M.E. Kenney and M.A. Rodgers: Unusually high affinity of Zn(II) tetradibenzobarrelenooctabutoxy-phthalocyanine for low density lipoproteins in a tumor-bearing mouse. Photochem Photobiol, (1995).
DOI: 10.1111/j.1751-1097.1995.tb03977.x
Google Scholar
[11]
E. Allémann, N. Brasseur, O. Benrezzak, J. Rousseau, S.V. Kudrevich, R.W. Boyle, J.C. Leroux, R. Gurny and J.E. Van Lier: PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol, (1995).
DOI: 10.1111/j.2042-7158.1995.tb05815.x
Google Scholar
[12]
I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, E.J. Bergey, A.R. Oseroff, J. Morgan, T.J. Dougherty and P.N. Prasad: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc, (2003).
DOI: 10.1021/ja0343095
Google Scholar
[13]
S.Z. Wang, R.M. Gao, F.M. Zhou and M. Selke: Nanomaterials and signlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem, (2004) 14(4): pp.487-93.
DOI: 10.1039/b311429e
Google Scholar
[14]
J.W. Snyder, E. Skovsen, J.D. Lambert and P.R. Ogilby: Subcellular, time-resolved studies of singlet oxygen in single cells. J Am Chem Soc, (2005) 127(42): pp.14558-9.
DOI: 10.1021/ja055342p
Google Scholar
[15]
P.D. Scholes, A.G. A Coombes, L. Illum, S.S. Davis, M. Vert and M.C. Davis: The preparation of sub-200 nm poly-(lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release, (1993) 25(1-2): p.145–53.
DOI: 10.1016/0168-3659(93)90103-c
Google Scholar
[16]
I.M. Cuccovia, F.H. Quina and H. Chaimovich: A remarkable enhancement of the rate of the ester thiolysis by synthetic amphiphile vesicles. Tetrahedron, (1982) 38(7): pp.917-20.
DOI: 10.1016/0040-4020(82)85070-9
Google Scholar
[17]
M.F. Gerhards, D. den Hartog, E.A. Rauws, T.M. van Gulik, D. Gonzalez, J.S. Lameris, L.T. de Wit and D.J. Gouma: Palliative treatment in patients with unresectable hilar cholangiocarcinoma: results of endoscopic drainage in patients with type III and IV hilar cholangiocarcinoma. Eur J Surg, (2001).
DOI: 10.1080/110241501300091444
Google Scholar
[18]
W.H. Paik, Y.S. Park, J.H. Hwang, S.H. Lee, C.J. Yoon, S.G. Kang, J.K. Lee, J.K. Ryu, Y.T. Kim and Y.B. Yoon: Palliative treatment with self-expandable metallic stents in patients with advanced type III or IV hilar cholangiocarcinoma: a percutaneous versus endoscopic approach. Gastrointest Endosc, (2009).
DOI: 10.1016/j.gie.2008.04.005
Google Scholar
[19]
G.D. De Palma, A. Pezzullo, M. Rega, M. Persico, F. Patrone, L. Mastantuono and G. Persico: Unilateral placement of metallic stents for malignant hilar obstruction: a prospective study. Gastrointest Endosc, (2003) 58(1): p.50–3.
DOI: 10.1067/mge.2003.310
Google Scholar
[20]
M.E. Ortner, K. Caca, F. Berr, J. Liebetruth, U. Mansmann, D. Huster, W. Voderholzer, G. Schachschal, J. Mossner and H. Lochs: Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology, (2003).
DOI: 10.1016/j.gastro.2003.07.015
Google Scholar
[21]
T. Zoepf, R. Jakobs, J.C. Arnold, D. Apel and J.F. Riemann: Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol, (2005) 100(11): p.2426–30.
DOI: 10.1111/j.1572-0241.2005.00318.x
Google Scholar
[22]
H. Witzigmann, F. Berr, U. Ringel, K. Caca, D. Uhlmann, K. Schoppmeyer, A. Tannapfel, C. Wittekind, J. Hauss and M. Wiedmann: Surgical and palliative management and outcome in 184 patients with hilar cholangiocarcinoma: palliative photodynamic therapy plus stenting is comparable to r1/r2 resection. Ann Surg, (2006).
DOI: 10.1097/01.sla.0000217639.10331.47
Google Scholar
[23]
D. Brevet, M. Gary-Bobo, L. Raehm, S. Richeter, O. Hocine, K. Amro, B. Loock, P. Couleaud, C. Frochot, A. Morere, P. Maillard, M. Garcia and J.O. Durand: Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun, (2009).
DOI: 10.1039/b900427k
Google Scholar
[24]
S.H. Cheng, C.H. Lee, C.S. Yang, F.G. Tseng, C.Y. Mou and L.W. Lo: Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem, (2009) 19(9): p.1252–7.
DOI: 10.1039/b816636f
Google Scholar
[25]
H.L. Tu, Y.S. Lin, H.Y. Lin, Y. Hung, L.W. Lo, Y.F. Chen and C.Y. Mou: In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater, (2009) 21(2): p.172– 7.
DOI: 10.1002/adma.200800548
Google Scholar
[26]
D. Bechet, P. Couleaud, C. Frochot, M.L. Viriot, F. Guillemin and M. Barberi-Heyob: Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol: (2008) 26(11): p.612 –21.
DOI: 10.1016/j.tibtech.2008.07.007
Google Scholar