Influence of Nucleating Agent on PLLA Crystalline and Mechanical Properties

Article Preview

Abstract:

This paper mainly concerned the effect of nucleating agents CAV101 on PLLA crystalline property. CAV101 was mixed with poly (L-lactic acid) (PLLA) to make PLLA/CAV101 blends, with CAV101 contents of 0, 0.1%, 0.3%, 0.5%, 0.7%, respectively. Mechanical performances, morphology and crystalline properties were investigated by tensile test, WAXD, SEM. The results demonstrated that the tensile strength and elongation of PLLA increased with the increase of CAV101 content and the maximum value at CAV101 of 0.3% and 0.5%, respectively. The crystallinity of PLLA blends CAV101 of 0.1%, 0.3%, 0.5%, 0.7% were 86.58%, 82.43%, 49.01%, 64.00% respectively.The SEM investigation found that the agglomeration of PLLA with the increasing of nucleating agents CAV101 content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-273

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromole. Biosci. 4 (2004) 835-864.

DOI: 10.1002/mabi.200400043

Google Scholar

[2] Z. Kulinski, E. Piorkowska, Crystallization, structure and properties of plasticized poly(L-lactide), Polymer 46 (2005) 10290-10300.

DOI: 10.1016/j.polymer.2005.07.101

Google Scholar

[3] P. Bordes, E. Pollet, L. Avérous, Nano-biocomposites: Biodegradable polyester/nanoclay systems, Prog. Polym. Sci. 34 (2009) 125-155.

DOI: 10.1016/j.progpolymsci.2008.10.002

Google Scholar

[4] M. Darder, P. Aranda, E. Ruiz-Hitzky, Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials, Adv. Mater. 19 (2007) 1309-1319.

DOI: 10.1002/adma.200602328

Google Scholar

[5] Sorrentino A, Gorrasi G, Vittoria V. Potenial perspectives of bio-nanocomposites for food packaging applications, Trends Food Sci. Technol. 18 (2007) 84-95.

DOI: 10.1016/j.tifs.2006.09.004

Google Scholar

[6] J. Y. Nam, M. Okamoto, H. Okamoto, et al. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide, Polymer 47 (2006) 1340.

DOI: 10.1016/j.polymer.2005.12.066

Google Scholar

[7] M. Okamoto, Y. Shinoda, N. Kinami, et al, Nonisothermal crystallization of poly (ethylene terephthalate) and its blends in the injection-molding process, J. Appl. Polym. Sci. 57 (1995) 1055.

DOI: 10.1002/app.1995.070570904

Google Scholar

[8] J. J. Kolstad, Crystallization kinetics of poly(L-lactide-co-meso-lactide), J. Appl. Polym. Sci. 62 (1996) 1079.

DOI: 10.1002/(sici)1097-4628(19961114)62:7<1079::aid-app14>3.0.co;2-1

Google Scholar

[9] H. G. Haubrug, R. Daussin, A. M. Jonas, et al, Epitaxial Nucleation of Poly(ethylene terephthalate) by Talc: Structure at the Lattice and Lamellar Scales, Macromolecules 36 (2003) 4452.

DOI: 10.1021/ma0341723

Google Scholar

[10] P. Emilie, E. Eliane, F. René, Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties, Appl. Clay Sci. 53 (2011) 58-65.

DOI: 10.1016/j.clay.2011.04.023

Google Scholar

[11] B. Li, F. X. Dong, X. L. Wang, et al. Organically modified rectorite toughened poly(lactic acid): Nanostructures, crystallization and mechanical properties, Eur. Polym. J.45 (2009) 2996-3003.

DOI: 10.1016/j.eurpolymj.2009.08.015

Google Scholar

[12] C. M. Agrawal, R. B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55 (2011) 141-150.

DOI: 10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.0.co;2-j

Google Scholar

[13] M. A. Paul, M. Alexandre, P. Degée, et al, New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: Thermal and morphological study, Polymer 44 (2003) 443-450.

DOI: 10.1016/s0032-3861(02)00778-4

Google Scholar

[14] B. Gupta, N. Revagade, J. Hilborn, Poly(lactic acid) fiber: an overview, Prog. Polym. Sci. 32 (2007) 455.

DOI: 10.1016/j.progpolymsci.2007.01.005

Google Scholar

[15] T. Villmow, P. Potschke, S. Pegel, et al, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49 (2008) 3500-3509.

DOI: 10.1016/j.polymer.2008.06.010

Google Scholar

[16] U. Hirosh, K. Takeshi, F. Kazuki, et al, Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex, Polymer 44 (2003) 5635.

DOI: 10.1016/s0032-3861(03)00583-4

Google Scholar

[17] D. W. Grijpma, A. J. Pennings, (Co)polymers of L-lactide, 1, synthesis, thermal properties and hydrolytic degradation, Macromol. Chem. Phys. 195 (1994) 1633-1647.

DOI: 10.1002/macp.1994.021950515

Google Scholar

[18] F. D. Santis, R. Pantani, G. Titomanlio. Nucleation and crystallization kinetics of Poly(lactic acid), Thermochimica Acta 522 (2011) 128-134.

DOI: 10.1016/j.tca.2011.05.034

Google Scholar

[19] D. Shia, C. Y. Hui, S. D. Burnside, et al, An interface model for the prediction of Young's modulus of layered silicate-elastomer nanocomposites, Polym. Compos. 19 (1998) 608-615.

DOI: 10.1002/pc.10134

Google Scholar

[20] D. Brizzolara, H. J. Cantow, K. Diederichs, et al. Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s, Macromolecules 29 (1996) 191-197.

DOI: 10.1021/ma951144e

Google Scholar

[21] J. Kobayashi, T. Asahi, M. Ichiki, et al, Structural and optical properties of poly lactic acids, J. Appl. Phys. 77 (1995) 2957.

Google Scholar