Ni Doped LiMn2O4 Prepared by a Flameless Combustion Synthesis

Article Preview

Abstract:

In this paper, LiNixMn2−xO4 materials were prepared by solution combustion synthesis method using acetic salts as raw materials and acetic acid as fuel. The phase structures are characterized by X-ray diffraction (XRD). Electrochemical performances of the materials are investigated by galvanostatic charge/discharge methods. XRD results revealed that the main phase of the products with increasing Ni3+ content is LiMn2O4, and there is a trace amount of Mn3O4 found in the product with Ni3+ content of 0.05. Electrochemical experiments showed that the capacity and the cyclability of the LiNixMn2−xO4 materials decrease with increasing Ni3+ content. Ni3+ doping has no significantly improvement for the capacity and the cyclability of the LiMn2O4 spinel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-254

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Winter, J. O. Besenhard, M. E. Spahr, et al: Adv. Mater. Vol. 10 (1998), p.725.

Google Scholar

[2] J. M. Tarascon and M. Armand: Nature Vol. 414 (2001), p.359.

Google Scholar

[3] V.G. Kumar, J.S. Gnanaraj, S. Ben-David, et al: Chem. Mater. Vol. 15 (2003), p.4211.

Google Scholar

[4] W.J. Zhou, S.J. Bao, B.L. He, et al: Electrochim. Acta Vol. 51 (2006), p.4701.

Google Scholar

[5] S. Chitra, P. Kalayani, T. Mohan, et al: J. Electroceram. Vol. 3-4 (1999), p.433.

Google Scholar

[6] M. Jayalakshmi, M. M. Rao, F. Scholz: Langmuir. Vol. 19 (2003), p.8403.

Google Scholar

[7] W. S. Yang, G. Zhang, J. Y. Xie, et al: J. Power Sources. Vol. 81-82 (1999), p.412.

Google Scholar

[8] Q. Zhong, A. Bonakdarpour, M. Zhang, et al: J. Electrochem. Soc. Vol. 144 (1997), p.205.

Google Scholar

[9] P. Barboux, J. M. Tarascon, F. K. Shokoohi: J. Solid State Chem. Vol. 94 (1991), p.185.

Google Scholar

[10] Y. S. Han, H. G., J. Power Sources Vol. 88 (2000), p.161.

Google Scholar

[11] G.Y. Liu, D.W. Guo, J.M. Guo, et al: Key Eng. Mater. Vol. 368-372 (2008), p.293.

Google Scholar

[12] G. Y Liu, J.M. Guo, Y.N. Li, et al. Adv. Mater. Res. Vol. 216(2011), p.134.

Google Scholar

[13] G. Y Liu, J.M. Guo, B.S. Wang, et al. Adv. Mater. Res. Vols. 143-144(2011), p.125.

Google Scholar

[14] G. Y Liu, J.M. Guo, L.L. Zhang, et al. Appl Mech. Mater. Vol. 142 (2012) p.205.

Google Scholar

[15] A. Yuan, L. Tian, W.M. Xu, et al: J. Power Sources Vol. 195 (2010) p.5032.

Google Scholar

[16] G.Y. Liu, D.W. Guo, J.M. Guo, et al: Key Eng. Mat. Vols. 368-372 (2008) p.293.

Google Scholar

[17] T. Kakuda, K. Uematsu, K. Toda, et al: J. Power Sources Vol. 167 (2007) p.499.

Google Scholar

[18] N.N. Sinha, P. Ragupathy, H.N. Vasan, et al: Int. J. Electrochem. Sci. Vol. 3 (2008) p.691.

Google Scholar