Effect of Silane Coupling Agent on the Curing, Tensile, Thermal, and Swelling Properties of EPDM/Mica Composites

Article Preview

Abstract:

In this work, the influence of silane (bis (3-triethoxysilylpropyl) tetrasulfide) or Si69 coupling agent on properties of EPDM/mica composites was studied. Both EPDM/mica composites with silane and without silane were compounded using two roll mill at various filler loading (i.e., 100/0, 100/10, 100/30, 100/50, 100/70). The tensile and thermal properties as well as fracture surfaces of composites were tested using Instron Universal Testing Machine, Thermal Gravimetric Analysis (TGA) and Emission Scanning Electron Microscope (SEM). The results indicated that the optimum cure (t90), scorch time (ts2) value was lower, while maximum torque (MH) value slightly higher for EPDM/mica composites with silane compared to EPDM/mica composites without silane. The tensile properties, M100 and M300 value increased for EPDM/mica composites in the presence of silane and the optimum filler loading for those properties occurred at 50 phr. In addition, thermal stability and swelling ratio for both composites improved with increasing filler loading. However, EPDM/mica composites with silane show better thermal stability and swelling ratio due to stronger linkage taking place at the rubberfiller boundary and it promotes filler dis-agglomeration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

641-651

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Albrecht, K., Maged, A. O., Lars Kocher, Ulrich, W. S. Influence of Platelet Aspect Ratio and Orientation On The Storage and Loss Moduli of HDPE-Mica Composites. Polymer, 46 (2004) p.523–530.

DOI: 10.1016/j.polymer.2004.09.056

Google Scholar

[2] Furtado, C.R.G., Leblanc, J. LR., Nunes, C.R. Fatigue Resistance of Mica Carbon Black Styrene Butadiene Rubber (SBR) Compounds. European Polymer Journal, 35 (1998) pp.1319-1325.

DOI: 10.1016/s0014-3057(98)00205-5

Google Scholar

[3] Petr, K., Andrea, K., Vaclav, S., Petr, A., Jan Subrt., Zdenek, K., Snejana, B. Properties of Surface-treated Mica in Anticorrosive Coatings. Progress in Organic Coating, 49 (2003) pp.137-145.

Google Scholar

[4] Yousef Jahania. Comparison of The Effect of Mica and Talc and Chemical Coupling on The Rheology, Morphology, and Mechanical Properties of Polypropylene Composites. Polymers for Advanced Technology, (2009) pp.942-951.

DOI: 10.1002/pat.1600

Google Scholar

[5] Yu, F.X., Z, H., Run S., Ke W., Qiang F. The Effect of Shear on Mechanical Properties and Orientation of HDPE/Mica Composites Obtained Via Dynamic Packing Injection Molding (DPIM) (2009).

DOI: 10.1002/pat.1355

Google Scholar

[6] Kastner, E., Nardin, M., Papirer, E. Coupling of Mica as Filler in Polypropylene. Journal of Materials Science Letters, 7 (1998) p.955957.

Google Scholar

[7] Ling, L., Jill, S. B. Alteration of Wetting of Mica Surfaces. Journal of Petroleum Science and Engineering, 24 (1999) p.75–83.

Google Scholar

[8] Bernaola, O. A., Saint Martin, G. Different Shapes of Tracks in Muscovite Mica. Radiation Measurements, 40 (2005) p.55 – 59.

DOI: 10.1016/j.radmeas.2004.11.006

Google Scholar

[9] Mohan, S., Navjeet, K., Lakhwant, S. Heavy Ion Range Anisotropy in Muscovite Mica. Nuclear Instruments and Methods in Physics Research B 268, (2010) p.2617–2625.

DOI: 10.1016/j.nimb.2010.06.024

Google Scholar

[10] Yanjun, X., Callum, A. S. H., Zefang, X., Holger, M., Carsten, M. Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review. Composites, 41 (2010) pp.806-819.

DOI: 10.1016/j.compositesa.2010.03.005

Google Scholar

[11] Poh, B. T., and Ng, C. C. Effect of Silane Coupling Agents on The Mooney Scorch Time Of Silica-Filled Natural Rubber Compound. Eur. Polym. J. Vol. 34, No. 7, (1998) pp.975-979.

DOI: 10.1016/s0014-3057(97)00211-5

Google Scholar

[12] Rui, Y., Yujuan, L., Kunhua, W., Jian, Y. Characterization of Surface Interaction of Inorganic Fillers With Silane Coupling Agents. Journal of Analytical and Applied Pyrolysis, 70 (2003) pp.413-425.

DOI: 10.1016/s0165-2370(02)00200-0

Google Scholar

[13] Parvaiz, M. R., and Mahanwar, P. A. Effect of Coupling Agent on the Mechanocal, Thermal, Electrical, Rheological and Morphological Properties of Polyetheretherketone Composites Reinforced with Surface-Modified Mica. Journal Technology and Engineering, 49 (2010).

DOI: 10.1080/03602551003773080

Google Scholar

[14] Soo-Jin Park and Ki-Sook. Cho Filler–Elastomer Interactions: Influence of Silane Coupling Agent on Crosslink Density and Thermal Stability of Silica/Rubber Composites. Journal of Colloid and Interface Science, 267, (2003) p.86–91.

DOI: 10.1016/s0021-9797(03)00132-2

Google Scholar

[15] Ismail, M. N and Turky, G. M. Effect of fillers and vulcanizing systems on the physicomechanical and electrical properties of EPDM vulcanizates. Polymer-Plastics Technology and Engineering, Vol 40(5), (2001) p.635–652.

DOI: 10.1081/ppt-120000306

Google Scholar

[16] Daniele, F. C., Joan Carlos, M. S., Regina, C. R. N., Leila, L. Y. V. Effect of Mica Addition on the Properties of Natural Rubber and Polybutadiene Rubber Vulcanizates. Journal of Applied Polymer Science, Vol. 90, (2003) pp.2156-2162.

DOI: 10.1002/app.12856

Google Scholar

[17] Neal, C., William, A. B., Jennifer, K, Neil, H. T. Studying Silane Mobility on Hydrated Mica using Ambient AFM. Ultramicroscopy, 106 (2006) p.765–770.

DOI: 10.1016/j.ultramic.2005.12.012

Google Scholar

[18] Beaudoin, J. J. Effect of Mica Surface Treatment in Mechanical Properties of Mica-Flake-Reinforced Cement Composites. Cement and Concrete, Vol 15, (1985) pp.637-644.

DOI: 10.1016/0008-8846(85)90063-8

Google Scholar

[19] Nabil, A. N. A. I., Bhimrao, D. S., Kapadi, U. R., Hundiwarlc, D. G. Effect of Bis (3-triethoxy silylpropyl)terasulphide on the Mechanical Properties of Flayash Filled Styrene Butadiene Rubber. Journal of Scientific and Industrial Research, Vol 63, (2004).

Google Scholar

[20] Firas, A., Michael, G., Georgina Kellya, B. F., Paul, J. P. Adhesion of Polymers. Progress in Polymer Science, 34 (2009) pp.948-968.

Google Scholar

[21] Ansarifar, A., Lim, H. P., Nijhawan, R. Assessment of the Effect of a Bifunctional Organosilane on The Bound Rubber and Properties of Some Natural Rubber compounds. International Journal of Adhesion & Adhesives, 24 (2004) p.9–22.

DOI: 10.1016/s0143-7496(03)00095-2

Google Scholar

[22] Ansarifara, M. A., Chonga, L. K., Zhangb, J., Bellc, A., Ellisd, R. J. Effect of Bifunctional Organosilane on The Joint Strength of Some Natural Rubber Compounds To Nylon. International Journal of Adhesion & Adhesives 23 (2003) 177–188.

DOI: 10.1016/s0143-7496(03)00010-1

Google Scholar

[23] Pongdhorn, S., Chakrit, S., Uthai, T., Kannika, H. Material Properties Comparison of Reinforcing Efficiency Between Si-69 and Si-264 in a Conventional Vulcanization System. Polymer Testing 23 (2004) 871–879.

DOI: 10.1016/j.polymertesting.2004.05.008

Google Scholar

[24] Thongpin, C., Sripetdee, C., Papaka, N., Pongsathornviwat, N. The Effect of Second Filler on Cure Characteristic and mechanical Properties of Si-69 treated precipitated Silica/NR Composite. Advanced Materials Research, Vols, 79-82 (2009).

DOI: 10.4028/www.scientific.net/amr.79-82.2183

Google Scholar

[25] Ismail, H., Shuhelmy, S., Edyham, M. R. The Effect of a Silane Coupling Agent on Curing Characteristics and Mechanical Properties of Bamboo Fibre Filled Natural Rubber Composites. European Polymer Journal, 38 (2001), pp.39-47.

DOI: 10.1016/s0014-3057(01)00113-6

Google Scholar