In Vitro Biodegradability of Poly(lactic Acid)/Hydroxyapatite Biocomposites Prepared by Solvent-Blending Technique

Article Preview

Abstract:

Poly (lactic acid) was solvent-blended and formed as thin ribbons with different weight fraction of hydroxyapatite, namely 5, 10 and 20wt%. In-vitro biodegradability of biocomposites was performed in phosphate buffer solution (PBS) at 37°C. The presence of hydroxyapatite tended to increase biodegradability of poly (lactic acid) in its biocomposites. Thermal stability of biocomposites was always higher than that neat poly (lactic acid) either before and after hydrolytic degradation tests. After biodegradation tests, some micro-holes and cracks were appeared in the surface morphology of biocomposites as well as the increasing crystallinity occurred.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

631-635

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Auras, B. Harte, S. Selke, Macromolecular Bioscience, 4 (2004) 835-864.

Google Scholar

[2] D. Zhang, L. Zhang, Z. Xiong, W. Bai, C. Xiong, Journal of Materials Science: Materials in Medicine, 20 (2009) 1971-(1978).

Google Scholar

[3] J.H. Chang, Y.U. An, G.S. Sur, Journal of Polymer Science, Part B: Polymer Physics, 41 (2003) 94-103.

Google Scholar

[4] M.A. Paul, C. Delcourt, M. Alexandre, P. Degée, F. Monteverde, P. Dubois, Polymer Degradation and Stability, 87 (2005) 535-542.

DOI: 10.1016/j.polymdegradstab.2004.10.011

Google Scholar

[5] P. -L. Lin, H. -W. Fang, T. Tseng, W. -H. Lee, Materials Letters, 61 (2007) 3009-3013.

Google Scholar

[6] K. Fukushima, D. Tabuani, M. Dottori, I. Armentano, J.M. Kenny, G. Camino, Polymer Degradation and Stability, 96 (2011) 2120-2129.

DOI: 10.1016/j.polymdegradstab.2011.09.018

Google Scholar

[7] T. -M. Wu, C. -Y. Wu, Polymer Degradation and Stability, 91 (2006) 2198-2204.

Google Scholar

[8] H. Yoshikawa, A. Myoui, Journal of Artificial Organs, 8 (2005) 131-136.

Google Scholar

[9] M. Kaavessina, I. Ali, R. Elleithy, S. Al-Zahrani, Journal of Polymer Research, 19 (2012) 1-12.

Google Scholar

[10] J. Zhang, M. Maeda, N. Kotobuki, M. Hirose, H. Ohgushi, D. Jiang, M. Iwasa, Materials Chemistry and Physics, 99 (2006) 398-404.

DOI: 10.1016/j.matchemphys.2005.11.020

Google Scholar

[11] Q. Zhou, M. Xanthos, Polymer Degradation and Stability, 93 (2008) 1450-1459.

Google Scholar

[12] J. Li, W. Zheng, L. Li, Y. Zheng, X. Lou, Thermochimica Acta, 493 (2009) 90-95.

Google Scholar

[13] S. Solarski, F. Mahjoubi, M. Ferreira, E. Devaux, P. Bachelet, S. Bourbigot, R. Delobel, P. Coszach, M. Murariu, A. Da silva Ferreira, M. Alexandre, P. Degee, P. Dubois, Journal of Materials Science, 42 (2007) 5105-5117.

DOI: 10.1007/s10853-006-0911-0

Google Scholar