A Study on the Rheological Properties of Low-Density Polyethylene/Palm Kernel Shell Composites

Article Preview

Abstract:

The rheological properties of the low density polyethylene (LDPE)/palm kernel shell (PKS) composites were studied by using a melt flow indexer. The silane treated and untreated composites were investigated. Both of the composites were further varied by amount of filler loading from 10 to 40 php. The testing temperature of composites varied from 180 to 210 °. It was found out that the MFI values of the composites increased with temperature but decreased with a rise of filler loading. The treated LDPE/PKS composites exhibited lower MFI values compared to untreated composites, which indicated the increase of viscosity. Thus, a better adhesion between the LDPE matrix and PKS was established. The effect of temperature on the viscosity of LDPE/PKS composites was found to obey the Arrhenius equation. The results showed that the activation energy of the composites increased with the increase of filler loading. However, at similar filler loading, the silane treated composites showed lower activation energy compared to untreated composites, leading to the reduction of their temperature sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

615-619

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Li, Y. -W. Mai, L. Ye, Compos. Sci. Technol. Vol. 60 (2000), p. (2037).

Google Scholar

[2] K. Joseph, S. Thomas, C. Pavithran, Polymer Vol. 37 (1996), p.5139.

Google Scholar

[3] A. C. de Albuquerque, K. Joseph, L. Hecker de Carvalho, J. R. M. d'Almeida, Compos. Sci. Technol. Vol. 60 (2000), p.833.

Google Scholar

[4] J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, A. K. Mohanty, Compos. Sci. Technol. Vol. 61 (2001), p.1303.

Google Scholar

[5] W. Liu, Y. J. Wang, Z. Sun, J. Appl. Polym. Sci. Vol. 88 (2003), p.2904.

Google Scholar

[6] N. M. Stark, R. H. White, S. A. Mueller, T. A. Osswald, Polym. Degrad. Stab. Vol. 95 (2010), p. (1903).

Google Scholar

[7] B. S. Gupta, I. Reiniati, M. -P. G. Laborie, Colloids Surf., A Vol. 302 (2007), p.388.

Google Scholar

[8] A. K. Mohanty, M. Misra, L. T. Drzal, J. Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[9] A. S. Singha, V. K. Thakur, Bull. Mater. Sci. Vol. 31 (2008), p.791.

Google Scholar

[10] G. Mehta, A. K. Mohanty, M. Misra, L. T. Drzal, J. Mater. Sci. Vol. 39 (2004), p.2961.

Google Scholar

[11] H. -S. Yang, M. P. Wolcott, H. -S. Kim, S. Kim, H. -J. Kim, Compos. Struct. Vol. 79 (2007), p.369.

Google Scholar

[12] S. Taj, M. A. Munawar, S. Khan, Proc. Pakistan Acad. Sci. Vol. 44 (2007), p.129.

Google Scholar

[13] S. Mohanty, S. K. Verma, S. K. Nayak, J. Appl. Polym. Sci. Vol. 99 (2006), p.1476.

Google Scholar

[14] S. Mohanty, S. K. Nayak, Polym. Eng. Sci. Vol. 47 (2007), p.1634.

Google Scholar

[15] W. Yang, Z. Y. Liu, G. F. Shan, Z. M. Li, B. H. Xie, M. B. Yang, Polym. Test. Vol. 24 (2005), p.490.

Google Scholar

[16] G. Wu, Y. Song, Q. Zheng, M. Du, P. Zhang, J. Appl. Polym. Sci. Vol. 88 (2003), p.2160.

Google Scholar

[17] J. Z. Liang, J. Thermoplast. Compos. Mater. Vol. 22 (2009), p.99.

Google Scholar