Effect of EDA/PEGDGE Mole Ratios on PEG-Based Hydrogel Scaffolds Properties

Article Preview

Abstract:

The synthesis of biocompatible hydrogel based on poly (ethylene glycol) (PEG) and ethylene diamine (EDA) using epoxy-amine chemistry was conducted. PEG was chosen as the base material (or monomer) to synthesise hydrogels in this study due to its high hydrophilicity, biocompatibility and low toxicity properties. The effects of mole ratios of EDA to PEGDGE on the hydrogel scaffolds properties (i.e., gelling time, swelling) were investigated. It was found out for hydrogel scaffolds prepared at 1.2 and 1.4 M [PEGDG and an EDA/PEGDGE mol ratio of 0.5 in DMSO gave the optimum hydrogel properties. Swelling studies has confirmed that hydrogel prepared at 0.5 mole ratios consist of highly cross-linked network as expected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

681-685

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lee, K. Y.; Mooney, D. J. Chemical Reviews Vol. 101 (7) (2001), pp.1869-1879.

Google Scholar

[2] Odian, G. G. Principles of Polymerization. 3rd. Edition; A. Wiley-Interscience Publication: USA, (1991).

Google Scholar

[3] Nicodemus, G. D.; Bryant, S. J. Tissue Eng., Vol. 14 (2) (2008), pp.149-165.

Google Scholar

[4] Park, Y.; Lutoft, M. P.; Hubbell, J. A.; Hunziker, B. E.; Wong, B. Tissue Eng., Vol. 10 (2004), p.515.

Google Scholar

[5] Wang, D.; Williams, C. G.; Li, Q.; Sharma, B.; Elisseeff, J. H.; Biomaterials Vol. 24 (2003), pp.3969-3980.

Google Scholar

[6] Lutoft, M. P.; Tirelli, N.; Cerritelli, S.; Cavalli, L.; Hubbell, J. A. Bioconjugate Chem., Vol. 12 (2001), pp.1051-1056.

Google Scholar

[7] Metters, A.; Hubbell, J. A. Biomacromolecules Vol. 6 (2005), pp.290-301.

Google Scholar

[8] Tew, G. N.; Sanabria-De-long, N.; Agrawal, S. K.; Bhatia, S. R. Soft Matter Vol. 1 (2005), pp.253-258.

Google Scholar

[9] Anderson, B. C.; Mallapragada, S. K. Biomaterials Vol. 23 (2002), pp.4345-4352.

Google Scholar

[10] Kim, J.; Lee, K. -W.; Hefferan, T. E.; Currier, B. L.; Yaszemski, M. J.; Lu, L. Biomacromolecules Vol. 9 (2008), pp.149-157.

Google Scholar

[11] Almany, L. Seliktar, D. Biomaterials Vol. 26 (2005), pp.2467-2477.

Google Scholar

[12] Adelow, C.; Segura, T.; Hubbel, J. A.; Frey, P. Biomaterials Vol. 29 (2008), pp.314-326.

Google Scholar

[13] Tessmar, J. K.; Goferich, A. M. Macromol. Biosci., Vol. 7 (2007), pp.23-39.

Google Scholar

[14] Li, J.; Kao, W. J. Biomacromolecules Vol. 4 (2003), pp.1055-1067.

Google Scholar

[15] Allan Y. K., Qiao, G. G.; Solomon, D. H. Chem. Mater., Vol. 16 (2004), pp.5650-5658.

Google Scholar