[1]
R. Siddique, T.R. Naik, Properties of concrete containing scrap-tire rubber -An overview, Waste Manage 24(6) (2004) 563–569.
DOI: 10.1016/j.wasman.2004.01.006
Google Scholar
[2]
I.B. Topcu, The roperties of rubberized concretes, Cem Concr Res 25(2) (1995) 304–310.
Google Scholar
[3]
M.M. Al-Tayeb, B. H. Abu Bakar, H.M. Akil, H. Ismail, Effect of partial replacements of sand and cement by waste rubber on the fracture characteristics of concrete, Polym. -Plast. Technol. Eng. 51 (6) (2012), pp.583-589.
DOI: 10.1080/03602559.2012.659307
Google Scholar
[4]
A.R. Khaloo, M. Dehestani, P. Rahmatabadi, Mechanical properties of concrete containing a high volume of tire–rubber particles, Waste Manage 28(12) (2008) 2472–2482.
DOI: 10.1016/j.wasman.2008.01.015
Google Scholar
[5]
P. Sukontasukkul, C. Chaikaew, Properties of concrete pedestrian block mixed with crumb rubber, Constr Build Mater 20(7) (2006) 450–457.
DOI: 10.1016/j.conbuildmat.2005.01.040
Google Scholar
[6]
M.M. Reda-Taha, A.S. El-Dieb, M.A. Abd. El-Wahab, M.E. Abdel-Hameed, Mechanical, fracture, and microstructural investigations of rubber concrete, J Mater Civ Eng 20(10) (2008) 640–649.
DOI: 10.1061/(asce)0899-1561(2008)20:10(640)
Google Scholar
[7]
I.B. Topcu, N. Avcular, Collision behaviours of rubberized concrete, Cem Concr Res 27(12) (1997) 1893-1898.
DOI: 10.1016/s0008-8846(97)00204-4
Google Scholar
[8]
N.N. Eldin, A.B. Senouci, Rubber-tire particles as concrete aggregate, J Mater Civ Eng 5(4) (1993) 478–496.
DOI: 10.1061/(asce)0899-1561(1993)5:4(478)
Google Scholar
[9]
G. Li, M.A. Stubblefield, G. Garrick, J. Eggers, C. Abadie, B. Huang, Development of waste tire modified concrete, Cem Concr Res 34(12) (2004) 2283–2289.
DOI: 10.1016/j.cemconres.2004.04.013
Google Scholar
[10]
A. Tortum, C. Celik, A.C. Aydin, Determination of the optimum conditions for tire rubber in asphalt concrete, Build Environ 40(11) (2005), p.1492–504.
DOI: 10.1016/j.buildenv.2004.11.013
Google Scholar
[11]
A. Turatsinze, S. Bonnet and J. -L. Granju, Mechanical characterisation of cement based mortar incorporating rubber aggregates from recycled worn tyres, Build Environ 40 (2) (2005), p.221–226.
DOI: 10.1016/j.buildenv.2004.05.012
Google Scholar
[12]
Z. Li, F. Li, J.S.L. Li. Properties of concrete incorporating rubber tyre particles, Mag Concrete Res 50 (4) (1998) 297–304.
DOI: 10.1680/macr.1998.50.4.297
Google Scholar
[13]
C. Albano, N. Camacho, J. Reyes, J.L. Feliu, M. Hernandez, Influence of scrap rubber addition to Portland I concrete composites: destructive and non-destructive testing, Compos Struct 71(4) (2005) 439–446.
DOI: 10.1016/j.compstruct.2005.09.037
Google Scholar
[14]
I.B. Topcu, Assessment of the brittleness index of rubberized concretes, Cem Concr Res 27(2) (1997) 177–183.
Google Scholar
[15]
I.B. Topcu, T. Bilir, Analysis of rubberized concrete as a three phase composite material, J Compos Mater 43(11) (2009) 1251–1263.
DOI: 10.1177/0021998308104226
Google Scholar
[16]
Z. K. Khatib, F.M. Bayomy, Rubberized Portland cement concrete, J Mater Civ Eng 11(3) (1999) 206–213.
DOI: 10.1061/(asce)0899-1561(1999)11:3(206)
Google Scholar
[17]
E. Guneyisi, M. Gesoglu, T Ozturan, Properties of rubberized concretes containing silica fume, Cem Concr Res 34 (12) (2004) 2309–2331.
Google Scholar
[18]
A.M. Ghaly, J.D. Cahill IV, Correlation of strength, rubber content, and water to cement ratio in rubberized concrete, Can J Civil Eng 32 (6) (2005) 1075–1081.
DOI: 10.1139/l05-063
Google Scholar
[19]
American Society for Testing and Materials (ASTM) C39/C39 M-01, Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, Pennsylvania (2001).
Google Scholar
[20]
American Society for Testing and Materials (ASTM) C192/192M-06, Standard practice for making and curing concrete test specimens in the laboratory, vol. 4. 02, West Conshohocken, PA, USA; (2006).
Google Scholar