Optimization of Annealing Temperature for PVDF-TrFE (70:30 mol %) Thin Film

Article Preview

Abstract:

The annealing temperature of 250nm PVDF-TrFE (70:30 mol%) spin coated thin films were optimized. The annealing temperature were varies starting from solvent evaporation (Ts), Curies transition (Tc), up to melting temperature (Tm). The result shows that the dielectric constant increases with the increasing of annealing temperature. Supported with the XRD observation indicating there were an improvement in crystallinity consistently with the increasing of the annealing temperature. Morphological properties of the annealed PVDF-TrFE thin films were observed by utilizing Field Emission Scanning Electron Microscope (FESEM) at 100k magnification. It can be found that, the annealing temperature promotes the development of elongated crystallite structure which known as ferroelectric crystal. However, the presence of nanoscale cracks on the thin film annealed at 160°C (AN160, over Tm) suggesting high possibility to posed defects while in device applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

721-726

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Japanese Journal of Applied Physics, vol. 8, p.2, (1969).

Google Scholar

[2] J. J. G. Bergman, McFee, J. H., and Crane, G. R., Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films, Applied Physics Letters, vol. 18, pp.203-205, (1971).

DOI: 10.1063/1.1653624

Google Scholar

[3] M. Tamura, Ogasawara, Kiyohide, Ono, Nobuyuki, and Hagiwara, Sumio, Piezoelectricity in uniaxially stretched poly(vinylidene fluoride), Journal of Applied Physics, vol. 45, pp.3768-3771, (1974).

DOI: 10.1063/1.1663857

Google Scholar

[4] X. Zhou, Chu, B., Wang, Y. and Zhang, Q., Polyvinylidene fluoride based polymeric dielectrics for high energy density capacitor application, in 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, pp.15-19 (2009).

DOI: 10.1109/icpadm.2009.5252267

Google Scholar

[5] I. Bae, Kang, Seok Ju, Park, Youn Jung, Furukawa, T. and Park, Cheolmin, Organic ferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for non-volatile memory applications, Current Applied Physics, vol. 10, pp. e54-e57, (2010).

DOI: 10.1016/j.cap.2009.12.013

Google Scholar

[6] Q. -D. Ling, Liaw, Der-Jang, Zhu, Chunxiang, Chan, Daniel Siu-Hung, Kang, En-Tang and Neoh, Koon-Gee, Polymer electronic memories: Materials, devices and mechanisms, Progress in Polymer Science, vol. 33, pp.917-978. (2008).

DOI: 10.1016/j.progpolymsci.2008.08.001

Google Scholar

[7] K. Müller, Henkel, Karsten, Paloumpa, Ioanna and Schmeier, Dieter, Organic field effect transistors with ferroelectric hysteresis, Thin Solid Films, vol. 515, pp.7683-7687. (2007).

DOI: 10.1016/j.tsf.2006.11.063

Google Scholar

[8] C. A. Nguyen, Lee, P. S. and Mhaisalkar, S. G., Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric, Organic Electronics, vol. 8, pp.415-422. (2007).

DOI: 10.1016/j.orgel.2007.01.010

Google Scholar

[9] C. A. Nguyen, Mhaisalkar, S. G., Ma, J. and Lee, P. S., Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric, Organic Electronics, vol. 9, pp.1087-1092. (2008).

DOI: 10.1016/j.orgel.2008.08.012

Google Scholar

[10] A. Rusu, Salvatore, Giovanni and Ionescu, Adrian, An experimental investigation of the surface potential in ferroelectric P(VDF-TrFE) FETs, Microelectronic Engineering, vol. 87, pp.1607-1609. (2010).

DOI: 10.1016/j.mee.2009.10.047

Google Scholar

[11] A. M. Vinogradov, Hugo Schmidt, V., Tuthill, George F. and Bohannan, Gary W., Damping and electromechanical energy losses in the piezoelectric polymer PVDF, Mechanics of Materials, vol. 36, pp.1007-1016. (2004).

DOI: 10.1016/j.mechmat.2003.04.002

Google Scholar

[12] Q. Q. Zhang, et al., Dielectric and pyroelectric properties of PCaT/P(VDF-TrFE) 0-3 composite thin films, Journal of Non-Crystalline Solids, vol. 254, pp.118-122. (1999).

DOI: 10.1016/s0022-3093(99)00382-8

Google Scholar

[13] M. D. Rozana, Reece, M.J., Famiza, L., Wahid, M.H., Arshad, A.N. and Sarip, M.N., Effect of PTFE and OTS on the Ferroelectric Properties of PVDF-TrFE Thin Films, World Appl. Sci. J., vol. 16, pp.1196-1202. (2012).

Google Scholar

[14] T. Furukawa, Structure and functional properties of ferroelectric polymers, Advances in Colloid and Interface Science, vol. 71-72, pp.183-208. (1997).

DOI: 10.1016/s0001-8686(97)90017-8

Google Scholar

[15] M. A. Barique and H. Ohigashi, Annealing effects on the Curie transition temperature and melting temperature of poly(vinylidene fluoride/trifluoroethylene) single crystalline films, Polymer, vol. 42, pp.4981-4987. (2001).

DOI: 10.1016/s0032-3861(00)00937-x

Google Scholar

[16] J. S. Lee, Prabu, Arun Anand and Kim, Kap Jin, Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device, Polymer, vol. 51, pp.6319-6333. (2010).

DOI: 10.1016/j.polymer.2010.10.053

Google Scholar

[17] R. Tanaka, Tashiro, Kohji and Kobayashi, Masamichi, Annealing effect on the ferroelectric phase transition behavior and domain structure of vinylidene fluoride (VDF)-trifluoroethylene copolymers: a comparison between uniaxially oriented VDF 73 and 65% copolymers, Polymer, vol. 40, pp.3855-3865. (1999).

DOI: 10.1016/s0032-3861(98)00609-0

Google Scholar

[18] W. Li, Zhu, Yuejin, Hua, Dayin, Wang, Peiqing, Chen, Xiaorong and Shen, Jie, Crystalline morphologies of P(VDF-TrFE) (70/30) copolymer films above melting point, Applied Surface Science, vol. 254, pp.7321-7325. (2008).

DOI: 10.1016/j.apsusc.2008.05.339

Google Scholar

[19] V. Sencadas, et al., Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film, Solid State Communications, vol. 129, pp.5-8, (2004).

DOI: 10.1016/j.ssc.2003.07.010

Google Scholar

[20] R. M. Dahan, S.I. Ismail, Famiza Latif, M.N. Sarip, M.H. Wahid and A.N. Arshad, Dielectric Properties of Collagen on Plasma Modified Polyvinylidene Fluoride, Am. J. Applied Sci., vol. 9, pp.694-699. (2012).

Google Scholar

[21] D. R. Dillon, Tenneti, Kishore K., Li, Christopher Y., Ko, Frank K., Sics, Igors and Hsiao, Benjamin S., On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites, Polymer, vol. 47, pp.1678-1688. (2006).

DOI: 10.1016/j.polymer.2006.01.015

Google Scholar

[22] P. Cebe and J. Runt, P(VDF-TrFE)-layered silicate nanocomposites. Part 1. X-ray scattering and thermal analysis studies, Polymer, vol. 45, pp.1923-1932. (2004).

DOI: 10.1016/j.polymer.2004.01.014

Google Scholar

[23] W. Y. Kim, Ka, Du Youn, Kwon, Il Woong, Kim, Dong Soo, Lee, Yong Soo, Kim, Sang Youl and Lee, Hee Chul, Patterning of ferroelectric poly(vinylidene fluoride-trifluoroethylene) film for nonvolatile memory devices, Current Applied Physics, vol. 11, pp. s341-s344. (2011).

DOI: 10.1109/led.2010.2042676

Google Scholar

[24] Y. W. Yuxiang Li, Qingpu Wang and Chunlei Ma, Effects of annealing on the optical and electronic properties of Poly(vinylidene fluoride-trifluoroethylene) copolymer thin films , Advanced Materials Research vol. 79-82, pp.919-922. (2009).

DOI: 10.4028/www.scientific.net/amr.79-82.919

Google Scholar

[25] K. J. K. a. A. A. P. Jong Soon Lee, Ferroelectric P(VDF/TrFE) Ultrathin Film for SPM-based Data Storage Devices , Solid State Phenomena, vol. 124-126, pp.303-306. (2007).

DOI: 10.4028/www.scientific.net/ssp.124-126.303

Google Scholar

[26] N. N. H. N. M. Lyly Nyl Ismail, Muhamad Salleh Shamsudin, Habibah Zulkefle, Mohd Hanapiah Abdullah, Sukreen Hana Herman and Mohamad Rusop, Effect of Solvent on the Dielectric Properties of Nanocomposite Poly(methyl methacrylate)-Doped Titanium Dioxide Dielectric Films, Japanese Journal of Applied Physics vol. 51, p. 06FG09. (2012).

DOI: 10.7567/jjap.51.06fg09

Google Scholar