[1]
Frey, D. W, Guild, J. R, and Hryhorenko, E. B, Edge Profile and Dimensional Control for Positive Photoresist", Interface, 81, Dallas, Texas, (1981).
Google Scholar
[2]
Yen, Y. T, and Foster, M., Deep UV and Plasma Hardening of Positive Photoresist Patterns", Interface, 82, San Diego, California, (1982).
Google Scholar
[3]
Mac Donald, S. A, Miller, R. D, Willson, C. G, Feinberg, G. M, Gleason, R. T, Halverson, R. M, acIntyre, M. W, and Motsiff, W. T, Image Reversal: The Production of a Negative Image in a Positive Photoresist", Interface, 82, San Diego, California, (1982).
Google Scholar
[4]
Uda. Hashim, Siti Fatimah, Abd. Rahman, M. Nuzaihan, Md. Nor, Shahrir Salleh, Design and Process Development of Silicon Nanowire Based DNA Biosensor using Electron Beam Lithography, 2008 International Conference on Electronic Design, December 1-3, 2008, Penang, Malaysia.
DOI: 10.1109/iced.2008.4786648
Google Scholar
[5]
Park J Y and Allen M G 1998 Packaging compatible micromagnetic devices using screen printed polymer/ ferrite composites Int. J. Microcircuits Electron. Package. 21243–52.
Google Scholar
[6]
Rojanapornpun O and Kwok C Y 2001 fabrication of integrated micro machined polymer magnet Proc. SPIE4592 347–54.
Google Scholar
[7]
Lorenz H, Despont M, Fahmi N, La Bianca N, Renaud P and Vettiger P 1997 SU-8: a low-cost negative resist for MEMS J. Micromech. Microeng. 7 121–4.
DOI: 10.1088/0960-1317/7/3/010
Google Scholar
[8]
Dammel, R. R, Sagan, J. P, Kokinda E, Eilbeck, N, Mack, C. A, Arthur, G. G; Henderson, C. L, Scheer, S. A, Rathsack, B. M; Willson, C. G, Improved Simulation of Photoresists using New Development Models, Proc. SPIE Int. Soc. Eng. 1998, 3333, 401-416.
DOI: 10.1117/12.312399
Google Scholar
[9]
Yu, J. J, Meister, C. C; Vizvary, G; Xu, C-B; Fallon, P, Sub- 0. 30 m Line Photoresist: Formulation Strategy and Lithographic Characterization, Proc. SPIE-Int. Soc. Eng. 1998, 3333, 1365-1380.
DOI: 10.1117/12.312389
Google Scholar
[10]
Douki, K, Kajita, T., Iwanga, S. -I., "Design of I-line Photoresist Capable of Sub-Quarter Micron Lithography; Effects of Novel Phenolic.
DOI: 10.1117/12.312428
Google Scholar
[11]
Th. S. Dhahi, U. Hashim, M. E. Ali, N. M. Ahmed, and T. Nazwa Fabrication of Lateral Polysilicon Gap of Less than 50nm Using Conventional Lithography Journal of Nano materials. Volume 2011, Article ID 250350.
DOI: 10.1155/2011/250350
Google Scholar
[12]
Dhahi, T. S, Hashim. U, Ahmed. N.M. 2011. Improvement in Processing of Nano Structure Fabrication Using O2.
Google Scholar
[13]
Dhahi, T. S, Hashim. U, Ahmed. N. M, Taib, A .M. 2010. A review on the Electrochemical Sensors and Biosensors Composed of Nanogaps as Sensing Material. J. Optoelectr. Adv. Materials 12(29): 1857-1862.
Google Scholar
[14]
Dhahi. T. S, Hashim. U, Ahmed. N.M. 2011. Fabrication and Characterization of 50nm Silicon Nanogap Structure. J. Sci. Adv. Materials 3(2): 233–238.
Google Scholar
[15]
Dhahi. T. S, Hashim. U, Ali. M. E, Nazwa. T, Ahmed. N. M. 2011. Fabrication and characterization of lateral polysilicon gap less than 50nm using conventional lithography process. J. Nano Materials, Article in Press.
DOI: 10.1155/2011/250350
Google Scholar