Parametric Study and Thickness Evaluation of Photoresist Development for the Formation of Microgap Electrodes Using Surface Nanoprofiler

Article Preview

Abstract:

A compact nanolaboratory on single chip is one of the challenging tasks for future reproductively of sensitive and selective lab-on-chip. This paper reports a simple and controllable technique for patterning microgap structures on (PR-1 2000A) positive photoresist. For the pattern transformation conventional lithography technique was used integrated with precise resolution mask namely chrome mask. This technique provides an especially simple method for the formation of micro features sizes of gaps onto the photoresist. The thickness of developed microgap structures on photoresist directly relates with the coating speed of spin coater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

942-947

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Frey, D. W, Guild, J. R, and Hryhorenko, E. B, Edge Profile and Dimensional Control for Positive Photoresist", Interface, 81, Dallas, Texas, (1981).

Google Scholar

[2] Yen, Y. T, and Foster, M., Deep UV and Plasma Hardening of Positive Photoresist Patterns", Interface, 82, San Diego, California, (1982).

Google Scholar

[3] Mac Donald, S. A, Miller, R. D, Willson, C. G, Feinberg, G. M, Gleason, R. T, Halverson, R. M, acIntyre, M. W, and Motsiff, W. T, Image Reversal: The Production of a Negative Image in a Positive Photoresist", Interface, 82, San Diego, California, (1982).

Google Scholar

[4] Uda. Hashim, Siti Fatimah, Abd. Rahman, M. Nuzaihan, Md. Nor, Shahrir Salleh, Design and Process Development of Silicon Nanowire Based DNA Biosensor using Electron Beam Lithography, 2008 International Conference on Electronic Design, December 1-3, 2008, Penang, Malaysia.

DOI: 10.1109/iced.2008.4786648

Google Scholar

[5] Park J Y and Allen M G 1998 Packaging compatible micromagnetic devices using screen printed polymer/ ferrite composites Int. J. Microcircuits Electron. Package. 21243–52.

Google Scholar

[6] Rojanapornpun O and Kwok C Y 2001 fabrication of integrated micro machined polymer magnet Proc. SPIE4592 347–54.

Google Scholar

[7] Lorenz H, Despont M, Fahmi N, La Bianca N, Renaud P and Vettiger P 1997 SU-8: a low-cost negative resist for MEMS J. Micromech. Microeng. 7 121–4.

DOI: 10.1088/0960-1317/7/3/010

Google Scholar

[8] Dammel, R. R, Sagan, J. P, Kokinda E, Eilbeck, N, Mack, C. A, Arthur, G. G; Henderson, C. L, Scheer, S. A, Rathsack, B. M; Willson, C. G, Improved Simulation of Photoresists using New Development Models, Proc. SPIE Int. Soc. Eng. 1998, 3333, 401-416.

DOI: 10.1117/12.312399

Google Scholar

[9] Yu, J. J, Meister, C. C; Vizvary, G; Xu, C-B; Fallon, P, Sub- 0. 30 m Line Photoresist: Formulation Strategy and Lithographic Characterization, Proc. SPIE-Int. Soc. Eng. 1998, 3333, 1365-1380.

DOI: 10.1117/12.312389

Google Scholar

[10] Douki, K, Kajita, T., Iwanga, S. -I., "Design of I-line Photoresist Capable of Sub-Quarter Micron Lithography; Effects of Novel Phenolic.

DOI: 10.1117/12.312428

Google Scholar

[11] Th. S. Dhahi, U. Hashim, M. E. Ali, N. M. Ahmed, and T. Nazwa Fabrication of Lateral Polysilicon Gap of Less than 50nm Using Conventional Lithography Journal of Nano materials. Volume 2011, Article ID 250350.

DOI: 10.1155/2011/250350

Google Scholar

[12] Dhahi, T. S, Hashim. U, Ahmed. N.M. 2011. Improvement in Processing of Nano Structure Fabrication Using O2.

Google Scholar

[13] Dhahi, T. S, Hashim. U, Ahmed. N. M, Taib, A .M. 2010. A review on the Electrochemical Sensors and Biosensors Composed of Nanogaps as Sensing Material. J. Optoelectr. Adv. Materials 12(29): 1857-1862.

Google Scholar

[14] Dhahi. T. S, Hashim. U, Ahmed. N.M. 2011. Fabrication and Characterization of 50nm Silicon Nanogap Structure. J. Sci. Adv. Materials 3(2): 233–238.

Google Scholar

[15] Dhahi. T. S, Hashim. U, Ali. M. E, Nazwa. T, Ahmed. N. M. 2011. Fabrication and characterization of lateral polysilicon gap less than 50nm using conventional lithography process. J. Nano Materials, Article in Press.

DOI: 10.1155/2011/250350

Google Scholar