Electrically Conductive PEDOT-PSS/PAN Composite Fibers Prepared by Wet Spinning

Article Preview

Abstract:

The composite conductive fibers based on poly (3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT-PSS) blended with polyacrylonitrile (PAN) were prepared via a conventional wet spinning process. The influences of PEDOT-PSS content on the electrical conductivity, thermal stability and mechanical properties of the composite fibers were investigated. The fiber with 1.83 wt% PEDOT-PSS showed a conductivity of 5.0 S/cm. The breaking strength of the fibers was in the range of 0.36-0.60 cN/dtex. The thermal stability of the PEDOT-PSS/PAN composite fibers was similar to but a slightly lower than the pure PAN. The XRD results revealed that both pure PAN and the PEDOT-PSS/PAN composite fibers were amorphous phase, and the crystallization of the latter was lower than the former.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

885-891

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hain, J.; Pich, A.; Adler, H.-J.; Rais, D.; Nešpůrek, S., Macromolecular Symposia 268, 61 (2008).

DOI: 10.1002/masy.200850813

Google Scholar

[2] Okuzaki, H.; Harashina, Y.; Yan, H., European Polymer Journal 45, 256 (2009).

Google Scholar

[3] Siju, C. R.; Narasimha Rao, K.; Ganesan, R.; Gopal, E. S. R.; Sindhu, S., physica status solidi (c) 8, 2739 (2011).

DOI: 10.1002/pssc.201084053

Google Scholar

[4] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Advanced Materials 12,481(2000).

Google Scholar

[5] ScieS. Chen, B. Lu, X. Duan, J. Xu, Journal of Polymer Science Part A: Polymer Chemistry 50,1967(2012).

Google Scholar

[6] Jianming, J.; Wei, P.; Shenglin, Y.; Guang, L., Synthetic Metals 149, 181 (2005).

Google Scholar

[7] Foroughi, J.; Spinks, G. M.; Wallace, G. G.; Whitten, P. G., Synthetic Metals 158, 104 (2008).

Google Scholar

[8] Vidal, F.; Plesse, C.; Aubert, P.-H.; Beouch, L.; Tran-Van, F.; Palaprat, G.; Verge, P.; Yammine, P.; Citerin, J.; Kheddar, A.; Sauques, L.; Chevrot, C.; Teyssié, D., Polymer International 59, 313 (2010).

DOI: 10.1002/pi.2772

Google Scholar

[9] Granato, F.; Bianco, A.; Bertarelli, C.; Zerbi, G., Macromolecular Rapid Communications 30, 453 (2009).

DOI: 10.1002/marc.200800623

Google Scholar

[10] Baik, W.; Luan, W.; Zhao, R. H.; Koo, S.; Kim, K.-S., Synthetic Metals 159, 1244 (2009).

Google Scholar

[11] Zhong, X.; Fei, G.; Xia, H., Journal of Applied Polymer Science 118, 2146 (2010).

Google Scholar

[12] Okuzaki, H.; Ishihara, M., Macromolecular Rapid Communications 24, 261 (2003).

Google Scholar

[13] Cui, S.; Zhao, Z.; Wei, W., Journal of Applied Polymer Science 72, 1039 (1999).

Google Scholar

[14] Xia, Y.; Lu, Y., Polymer Composites 31, 340 (2010).

Google Scholar

[15] Takahashi, T.; Ishihara, M.; Okuzaki, H., Synthetic Metals 152, 73 (2005).

Google Scholar

[16] Toptaş, N.; Karakışla, M.; Saçak, M., Polymer Composites 30, 1618 (2009).

Google Scholar

[17] Rinaldi, A. W.; Matos, R.; Rubira, A. F.; Ferreira, O. P.; Girotto, E. M., Journal of Applied Polymer science 96, 1710 (2005).

Google Scholar