A Study of Cutting Parameters Optimization in High-Speed Milling GH4169 with TiAlN Coated Carbide Tool

Article Preview

Abstract:

The orthogonal experiment is processed for high-speed milling superalloy GH4169 with TiAlN coated carbide inserts. The surface roughness prediction model based on cutting parameters is established by using the least-squares regression method. And the effect of cutting parameters on surface roughness is studied. According to the prediction model of surface roughness, a model of cutting parameters optimization by using genetic algorithm based on annealing penalty function is established for maximum material removal rate under specified surface roughness values. Obtain the optimal parameter combination when the surface roughness Ra≤0.2µm, and the experimental validation is done. These results provide the basis for improving processing efficiency of processing GH4169 and choosing parameters under specified constraint conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-149

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Dudzinski, A. Devillez, A. Moufki, et al, A review of developments towards dry and high speed machining of Inconel 718 alloy, Int J Mach Tools Manuf. 44 (2004) 439-456.

DOI: 10.1016/s0890-6955(03)00159-7

Google Scholar

[2] Herbert Schulz, Eberhard Abeled, He Ning, The High Speed Machining Fundamentals and Applications, first ed., Science Press, Beijing, (2010).

Google Scholar

[3] Tian-Syung Lan, Ming-Yung Wang, Competitive parameter optimization of multi-quality CNC turning, Int J Adv Manuf Technol. 41 (2009) 820-826.

DOI: 10.1007/s00170-008-1495-4

Google Scholar

[4] R. Venkata Rao, P.J. Pawar, Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms, Applied Soft Computing. 10 (2010) 445-456.

DOI: 10.1016/j.asoc.2009.08.007

Google Scholar

[5] O. Zarei, M. Fesanghary, B. Farshi, et al, Optimization of multi-pass face-milling via harmony search algorithm, Journal of Materials Processing Technology. 209 (2009) 2386-2392.

DOI: 10.1016/j.jmatprotec.2008.05.029

Google Scholar

[6] Liu Haijiang, Huang Wei, Computer Numerical Control Machining Parameter Optimization Based on Particle Swarm Optimization, Journal of Tongji University (Natural Science), 2008, 36(6): 803-806.

Google Scholar

[7] C.A. Poojari, J.E. Beasley, Improving benders decomposition using a genetic algorithm, European Journal of Operational Research. 119 (2009) 89-97.

DOI: 10.1016/j.ejor.2008.10.033

Google Scholar

[8] Sun Liang, Cheng Xiaochun, Liang Yanchun. Solving job shop scheduling problem using genetic algorithm with penalty function, International Journal of Intelligent Information Processing. December 65-77, (2010).

DOI: 10.4156/ijiip.vol1.issue2.7

Google Scholar

[9] Schulz H, Moriwaki T. High-speed machining. Annals of the CIRP, 1992, 41(2): 637-643.

DOI: 10.1016/s0007-8506(07)63250-8

Google Scholar

[10] R.M. Arunachalam, M.A. Mannan, et al, Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, International Journal of Machine Tools & Manufacture. 44 (2004) 879-887.

DOI: 10.1016/j.ijmachtools.2004.02.016

Google Scholar