Polaronic Effects in Wurtzite InxGa1-xN/GaN Parabolic Quantum Well

Article Preview

Abstract:

The energy levels of polaron in a wurtzite InxGa1-xN/GaN parabolic quantum well are investigated by adopting a modified Lee-Low-Pines variational method. The ground state energy, the transition energy and the contributions of different branches of optical phonon modes to the ground state energy as functions of the well width are given. The effects of the anisotropy of optical phonon modes and the spatial dependence effective mass, dielectric constant, phonon frequency on energy levels are considered in calculation. In order to compare, the corresponding results in zinc-blende parabolic quantum well are given. The results indicate that the contributions of the electron-optical phonon interaction to ground state energy of polaron in InxGa1-xN/GaN is very large, and make the energy of polaron reduces. For a narrower quantum well,the contributions of half-space optical phonon modes is large , while for a wider one, the contributions of the confined optical phonon modes are larger. The ground state energy and the transition energy of polaron in wurtzite InxGa1-xN/GaN are smaller than that of zinc-blende InxGa1-xN/GaN, and the contributions of the electron-optical phonon interaction to ground state energy of polaron in wurtzite InxGa1-xN/GaN are greater than that of zinc-blende InxGa1-xN/GaN. The contributions of the electron-optical phonon interaction to ground state energy of polaron in wurtzite InxGa1-xN/GaN (about from 22 to 32 meV) are greater than that of GaAs/AlxGa1-xAs parabolic quantum well (about from 1.8 to 3.2 meV). Therefore, the electron-optical phonon interaction should be considered for studying electron state in InxGa1-xN/GaN parabolic quantum well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-151

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Perkins JD, Mascarenhas A, Zhang Y, Geisz JF. Friedman DJ, Olson JM, et al. Nitrogen-activated transition, level repulsion, and ban gap reduction in GaAs1-xNx with x<0. 03. Phys. Rev. Lett., 1999; 82: 3312-3315.

Google Scholar

[2] Wang RM, Chen GD, Zhu YZ. Micro-Raman scattering study of hexagonal InGaN epitaxial layer. Acta Phys. Sin., 2006; 55: 914 -919.

DOI: 10.7498/aps.55.914

Google Scholar

[3] Lee BC, Kim KW, Dutta M, Stroscio MA. Electron-optical-phonon scattering in wurtzite crystals. Phys. Rev. B, 1997; 56: 997-1000.

DOI: 10.1103/physrevb.56.997

Google Scholar

[4] Lee BC, Kim KW, Stroscio MA, Dutta M. Optical-phonon confinement and scattering in wurtzite heterostructures. Phys. Rev. B, 1998; 58: 4860-4865.

DOI: 10.1103/physrevb.58.4860

Google Scholar

[5] Komirenko SM, Kim KW, Stroscio MA, Dutta M. Energy-dependent electron scattering via interaction with optical phonons in wurtzite crystals and quantum wells. Phys. Rev. B, 2000; 61: 2034-(2040).

DOI: 10.1103/physrevb.61.2034

Google Scholar

[6] Wang H, Farias GA, Freire VN. Iterface-related exciton-energy blueshift in GaN/AlxGa1-xN zinc-blende and wurtzite singale quantum wells. Phys. Rev. B, 1999; 60: 5705-5713.

Google Scholar

[7] Shi JJ. Electron–interface-phonon interaction in wurtzite multilayer heterostructures. Solid State Commun., 2003; 127: 51-55.

DOI: 10.1016/s0038-1098(03)00256-4

Google Scholar

[8] Shi JJ, Chu XL, Goldys EM. Propagating optical-phonon modes and their electron-phonon interactions in wurtzite GaN∕AlxGa1−xN quantum wells. Phys. Rev. B, 2004; 70: 115318-115326.

DOI: 10.1103/physrevb.68.165335

Google Scholar

[9] Zhao FQ, Gong J. Energy of a polaron in a wurtzite nitride finite parabolic quantum well. Chin. Phys. Lett., 2007; 24: 1327-1331.

DOI: 10.1088/0256-307x/24/5/056

Google Scholar

[10] Zhao FQ, Zhang M. Bound polarons in wurtzite GaN/AlxGa1-xN Quantum Well. Phys. Stat. Sol. C, 2011; 8: 62-65.

Google Scholar

[11] Zhao FQ, Zhang M. Polaronic effect on the electron energy spectrum in a wurtzite InxGa1-xN/GaN Quantum Well. J. Phys. Soc. Jap., 2011; 80: 94713-1 - 94713-5.

Google Scholar

[12] Zhao FQ, Zhang M. Polaronic effects in wurtzite GaN/AlxGa1-xN Quantum Well s. Int. J. Mod. Phys. B, 2011; 25: 2105-2114.

Google Scholar

[13] Cai J, Shi JJ. Exciton state in wurtzite InGaN/GaN quantum wells: strong built-in electron field and interface optical-phonon effetcs. Solid State Commun., 2008; 145: 235.

DOI: 10.1016/j.ssc.2007.11.021

Google Scholar

[14] Zhu YH, Shi JJ. Effects of built-in electric field on polarons in wurtzite GaN/AlN quantum wells. Physica E, 2009; 41: 746-752.

DOI: 10.1016/j.physe.2008.11.019

Google Scholar

[15] Zhao HP, Tansu N. Optical gain characteristics of staggered InGaN quantum wells lasers. J. Appl. Phys., 2010; 107: 113110-113122.

DOI: 10.1063/1.3407564

Google Scholar

[16] Lai KY, Lin GJ, Lai YL, Chen YF, He JH. Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells. Appl. Phys. Lett., 2010; 96: 081103-081106.

DOI: 10.1063/1.3327331

Google Scholar

[17] Belabbes A, de Carvalho LC, Schleife A, Bechstedt F. Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B, 2011; 84: 125108-125117.

DOI: 10.1103/physrevb.84.125108

Google Scholar

[18] Chang WL, A. John P. Radiative life time of an exciton confined in a strained GaN/Ga1-xAlxN cylindrical dot: built-in electric field effects. Chin. Phys. B, 2011; 20: 077104-1 – 077104-6.

DOI: 10.1088/1674-1056/20/7/077104

Google Scholar

[19] Qi XH, Kong XY,Lin JY. Effects of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well. Phys. Rev. B, 1998; 58: 10578-10582.

DOI: 10.1103/physrevb.58.10578

Google Scholar

[20] Goldhana R, Scheiner J, Shokhovets S, Frey T, Köhler U, As D J, Lischka K. Refractive index and gap energy of cubic InxGa1−xN. Appl. Phys. Lett., 2000; 76: 291-294.

DOI: 10.1063/1.125725

Google Scholar

[21] Vurgaftman I, Melyer JR. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys., 2003; 94: 3675-3697.

Google Scholar

[22] Zhao FQ, Liang XX. Polarons with spatially dependent mass in a finite parabolic quantum well, Chin. Phys. Lett., 2002; 19: 974-977.

DOI: 10.1088/0256-307x/19/7/329

Google Scholar