[1]
Zhang P, Cui H, Li L. Photobiological effects of nano-TiO2 semiconductors sol. Journal of Inorganic Materials 2008; 23: 55-60.
Google Scholar
[2]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238: 37-8.
DOI: 10.1038/238037a0
Google Scholar
[3]
Matsunaga T, Tomoda R, Nakajima T, Wake H. Photochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiological Letters 1985; 29: 211-4.
DOI: 10.1111/j.1574-6968.1985.tb00864.x
Google Scholar
[4]
Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T. Continuous-sterilization system that uses photosemiconductor powders. Applied and Environmental Microbiology 1988; 54(6): 1330-3.
DOI: 10.1128/aem.54.6.1330-1333.1988
Google Scholar
[5]
Cai R, Hashimoto K, Kubota Y, Fujishima A. Increment of photocatalytic killing of cancer cell using TiO2 with the aid of superoxide dismutase. Chemistry Letters 1992; 3(3): 427-30.
DOI: 10.1246/cl.1992.427
Google Scholar
[6]
Huang N, Xu M, Yuan C, Yu R. The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells. Journal of Photochemistry and Photobiology A: Chemistry 1997; 108(2–3): 229–33.
DOI: 10.1016/s1010-6030(97)00093-2
Google Scholar
[7]
Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science and Technology 1998; 32(5): 726-8.
DOI: 10.1021/es970860o
Google Scholar
[8]
Cui H, Jiang J, Gu W, Sun C, Wu D, Yang T, et al. Photocatalytic inactivation efficiency of anatase nano-TiO2 sol on the H9N2 avian influenza virus. Photochemistry and Photobiology 2010; 86(5): 1135–9.
DOI: 10.1111/j.1751-1097.2010.00763.x
Google Scholar
[9]
Fang Z. Research methods of plant disease. 3rd ed. Beijing: China Agriculture Press; (1998).
Google Scholar
[10]
GB/T 17980. 30-2000. Pesticide-Guidelines for the field efficacy trials(Ⅰ)-Fungicides against cucumber powdery mildew.
Google Scholar
[11]
Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 1994; 79: 583-93.
DOI: 10.1016/0092-8674(94)90544-4
Google Scholar
[12]
Jabs T, Dietrich RA, Dangl JL. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 1996; 273: 1853-6.
DOI: 10.1126/science.273.5283.1853
Google Scholar
[13]
Dang J. Innate immunity: Plants just say NO to pathogens. Nature 1998; 394: 525-7.
Google Scholar
[14]
Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 1998; 92: 773-84.
DOI: 10.1016/s0092-8674(00)81405-1
Google Scholar
[15]
Beatwick CS, Brown IR, Bennett MHR, Mansfield JW. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell 1997; 9: 209-21.
DOI: 10.2307/3870542
Google Scholar
[16]
Obee TN, Brown RT. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene. Environmental Science and Technology 1995; 29 (5): 1223-31.
DOI: 10.1021/es00005a013
Google Scholar
[17]
Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 1981; 293 (2): 206-8.
DOI: 10.1038/293206a0
Google Scholar
[18]
Floresa Y, Diaz C, Rubert A, Benítez GA, Moreno MS, Fernández Lorenzo de Mele MA, et al. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. Journal of Colloid and Interface Science 2010; 350(2): 402–8.
DOI: 10.1016/j.jcis.2010.06.052
Google Scholar
[19]
Akhavan O. Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science 2009; 336(1): 117–24.
DOI: 10.1016/j.jcis.2009.03.018
Google Scholar
[20]
Tong SY, Xu H, Zhang RQ, Fung MK, Yip CT, Ng AMC, et al. Surface modification of TiO2 and ZnO nanosurfaces and applications. INEC, 2010: 22-3.
Google Scholar
[21]
Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV. Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chemistry of Materials 2008; 20 (7): 2455–60.
DOI: 10.1021/cm7033867
Google Scholar
[22]
Song J, Kang H, Lee C, Hwang SH, Jang J. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Applied Materials and Interfaces 2012; 4 (1): 460–5.
DOI: 10.1021/am201563t
Google Scholar