[1]
Peacock PW, Robertson J. Bonding, energies, and band offsets of Si–ZrO2 and HfO2 gate oxide interfaces. Phy Rev Lett 2004; 92: 057601.
Google Scholar
[2]
Dong YF, Feng YP, Wang SJ, Huan ACH. Impact of interface structure on Schottky-barrier height for Ni∕ ZrO (001) interfaces. Phys Rev B 2005; 72: 045327.
DOI: 10.1063/1.1891285
Google Scholar
[3]
Hobbs C, Fonseca LRC, Knizhnik A, Dhandapani V, Samavedam SB, Taylor WJ et al. Fermi-level pinning at the polysilicon/metal oxide interface-Part I. IEEE Trans. Electron Devices 2004; 51: 971.
DOI: 10.1109/ted.2004.829513
Google Scholar
[4]
Park S, Colombo L, Nishi Y, Cho K. Ab initio study of metal gate electrode work function. Appl Phys Lett 2005; 86: 073118.
DOI: 10.1063/1.1865349
Google Scholar
[5]
De I, Johri D, Srivastava A, Osburn CM. Impact of gate workfunction on device performance at the 50 nm technology node. Solid-StateElectron 2000; 44: 1077.
DOI: 10.1016/s0038-1101(99)00323-8
Google Scholar
[6]
Dong YF, Wang SJ, Feng YP, Huan ACH. Chemical tuning of band alignments for metal gate/high-κ oxide interfaces. Phys Rev B 2006; 73: 045302.
DOI: 10.1103/physrevb.73.045302
Google Scholar
[7]
Alshareef HN, Choi K, Wen HC, Luan H, Harris H, Senzaki Y et al. Composition dependence of the work function of Ta1-xAlxNy metal gates. Appl Phys Lettt 2006; 88: 072108.
DOI: 10.1063/1.2174836
Google Scholar
[8]
Ren C, Chan DSH, Wang XP, Faizhal BB, Li MF, Yeo YC et al. Physical and electrical properties of lanthanide-incorporated tantalum nitride for n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett 2005; 87: 073506.
DOI: 10.1063/1.1947901
Google Scholar
[9]
Ishii R, Matsumura K, Sakai A, Sakata T. Work function of binary alloys. Appl Surf Sci 2001; 658: 169–170.
DOI: 10.1016/s0169-4332(00)00807-2
Google Scholar
[10]
Tsui BY. Wide Range Work Function Modulation of Binary Alloys for MOSFET Application. IEEE Electron Device Lett 2003; 24: 153.
DOI: 10.1109/led.2003.809528
Google Scholar
[11]
Xu GG, Wu QY, Zhang JM, Chen ZG, Huang ZG. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni (111) surface. Acta Phys Sin 2009; 58: (1924).
DOI: 10.7498/aps.58.1924
Google Scholar
[12]
Xu GG, Wu QY, Chen ZG, Huang ZG, Wu RQ , Feng YP. Disorder and surface effects on work function of Ni-Pt metal gates. Phys Rev B 2008; 78: 115420.
DOI: 10.1103/physrevb.78.115420
Google Scholar
[13]
Ohnishi S, Freeman AJ. Surface magnetism of Fe (001). Phys Rev B 1983; 28: 6741.
Google Scholar
[14]
Fu CL, Freeman AJ. Surface ferromagnetism of Cr(001). Phys Rev B 1986; 33: 1755.
Google Scholar
[15]
Alden M, Mirbt S, Skriver HL, Rosengaard NM , Johansson B. Surface magnetism in iron, cobalt, and nickel. Phys Rev B 1992; 46: 6303.
DOI: 10.1103/physrevb.46.6303
Google Scholar
[16]
Rader O, Gudat W. Electronic structure of two-dimensional magnetic alloys: c(2×2) Mn on Cu(100) and Ni(100). Phys Rev B 1997; 55: 5404.
DOI: 10.1103/physrevb.55.5404
Google Scholar
[17]
Yamada TK , Bischoff MMJ, Mizoguchi T, Kempen HV. STM and STS study of ultrathin Mn layers on Fe(001). Surf Sci 2002; 516: 179.
DOI: 10.1016/s0039-6028(02)02032-0
Google Scholar
[18]
Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992; 64: 1045.
DOI: 10.1103/revmodphys.64.1045
Google Scholar
[19]
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996; 6: 15.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[20]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999; 59: 1758.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[21]
Perdew J, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 1981; 23: 5048.
DOI: 10.1103/physrevb.23.5048
Google Scholar
[22]
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B1998; 57: 1505.
DOI: 10.1103/physrevb.57.1505
Google Scholar
[23]
Stojic NL. Phase stability of Fe and Mn within density-functional theory plus on-site Coulomb interaction approaches. J. Magn. Magn. Mater 2008; 320: 100.
DOI: 10.1016/j.jmmm.2007.05.011
Google Scholar
[24]
Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 1989; 40: 3616.
DOI: 10.1103/physrevb.40.3616
Google Scholar
[25]
Press WH, Flannery BP, Teukolsky SA, Vetterling WT. New Numerical Recipes. 2nd ed. New York. Cambridge University Press; (1986).
DOI: 10.1007/bf01321860
Google Scholar
[26]
Hafner J, Spišák D. Ab initio investigation of the magnetism of tetragonal Mn: Bulk, surface, ultrathin films, and multilayers. Phys Rev B 2005; 72: 144420.
DOI: 10.1103/physrevb.72.144420
Google Scholar
[27]
Acet M, Zahres H, Wassermann EF, Pepperhoff W. High-temperature moment-volume instability and anti-Invar of γ-Fe. Phys Rev B 1994; 49: 6012.
DOI: 10.1103/physrevb.49.6012
Google Scholar
[28]
Kittel C. Introduction to Solid State Physics. seventh ed. New York. Wiley; (1996).
Google Scholar
[29]
Turner AM, Chang YJ, Erskine JL. Surface States and the Photoelectron Spin Polarization of Fe (100). Phys Rev Lett 1982; 48: 348.
DOI: 10.1103/physrevlett.48.348
Google Scholar