The Influence of Spin Orientation and Alloying on Magnetism and Work Function for Fex-1Mnx/Fe (001) Films

Article Preview

Abstract:

By using first-principles methods based on density functional theory (DFT), we investigated the magnetism and work function of Fex-1Mnx/Fe (001) films with different spin arrangements (parallel (PL), antiparallel (APL1) and mixed (APL2)) for Mn and Fe atoms. The calculation shows that the spin arrangement and alloying have evident impact on the work function and moment of Fex-1Mnx/Fe (001) films. For Mn/Fe (001), the spin arrangement affects evidently the geometrical structure, work function and magnetism of the system. Moreover, the work function for non-magnetic (NM) state is found to be higher than that for magnetic state, and the work function of Mn/Fe (001) with PL state is less than that with APL2 state. For Fex-1Mnx/Fe (001), with increased Mn doping content, the Fe moments in the second layer decrease and their values are all less than the bulk value of Fe atom, which is due to the antiferromagnetic coupling between Mn and Fe atoms. Furthermore, we found that the surface alloying can have an impact on the work function of Fex-1Mnx/Fe (001), but the role of spin polarization is also quite important.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-235

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Peacock PW, Robertson J. Bonding, energies, and band offsets of Si–ZrO2 and HfO2 gate oxide interfaces. Phy Rev Lett 2004; 92: 057601.

Google Scholar

[2] Dong YF, Feng YP, Wang SJ, Huan ACH. Impact of interface structure on Schottky-barrier height for Ni∕ ZrO (001) interfaces. Phys Rev B 2005; 72: 045327.

DOI: 10.1063/1.1891285

Google Scholar

[3] Hobbs C, Fonseca LRC, Knizhnik A, Dhandapani V, Samavedam SB, Taylor WJ et al. Fermi-level pinning at the polysilicon/metal oxide interface-Part I. IEEE Trans. Electron Devices 2004; 51: 971.

DOI: 10.1109/ted.2004.829513

Google Scholar

[4] Park S, Colombo L, Nishi Y, Cho K. Ab initio study of metal gate electrode work function. Appl Phys Lett 2005; 86: 073118.

DOI: 10.1063/1.1865349

Google Scholar

[5] De I, Johri D, Srivastava A, Osburn CM. Impact of gate workfunction on device performance at the 50 nm technology node. Solid-StateElectron 2000; 44: 1077.

DOI: 10.1016/s0038-1101(99)00323-8

Google Scholar

[6] Dong YF, Wang SJ, Feng YP, Huan ACH. Chemical tuning of band alignments for metal gate/high-κ oxide interfaces. Phys Rev B 2006; 73: 045302.

DOI: 10.1103/physrevb.73.045302

Google Scholar

[7] Alshareef HN, Choi K, Wen HC, Luan H, Harris H, Senzaki Y et al. Composition dependence of the work function of Ta1-xAlxNy metal gates. Appl Phys Lettt 2006; 88: 072108.

DOI: 10.1063/1.2174836

Google Scholar

[8] Ren C, Chan DSH, Wang XP, Faizhal BB, Li MF, Yeo YC et al. Physical and electrical properties of lanthanide-incorporated tantalum nitride for n-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett 2005; 87: 073506.

DOI: 10.1063/1.1947901

Google Scholar

[9] Ishii R, Matsumura K, Sakai A, Sakata T. Work function of binary alloys. Appl Surf Sci 2001; 658: 169–170.

DOI: 10.1016/s0169-4332(00)00807-2

Google Scholar

[10] Tsui BY. Wide Range Work Function Modulation of Binary Alloys for MOSFET Application. IEEE Electron Device Lett 2003; 24: 153.

DOI: 10.1109/led.2003.809528

Google Scholar

[11] Xu GG, Wu QY, Zhang JM, Chen ZG, Huang ZG. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni (111) surface. Acta Phys Sin 2009; 58: (1924).

DOI: 10.7498/aps.58.1924

Google Scholar

[12] Xu GG, Wu QY, Chen ZG, Huang ZG, Wu RQ , Feng YP. Disorder and surface effects on work function of Ni-Pt metal gates. Phys Rev B 2008; 78: 115420.

DOI: 10.1103/physrevb.78.115420

Google Scholar

[13] Ohnishi S, Freeman AJ. Surface magnetism of Fe (001). Phys Rev B 1983; 28: 6741.

Google Scholar

[14] Fu CL, Freeman AJ. Surface ferromagnetism of Cr(001). Phys Rev B 1986; 33: 1755.

Google Scholar

[15] Alden M, Mirbt S, Skriver HL, Rosengaard NM , Johansson B. Surface magnetism in iron, cobalt, and nickel. Phys Rev B 1992; 46: 6303.

DOI: 10.1103/physrevb.46.6303

Google Scholar

[16] Rader O, Gudat W. Electronic structure of two-dimensional magnetic alloys: c(2×2) Mn on Cu(100) and Ni(100). Phys Rev B 1997; 55: 5404.

DOI: 10.1103/physrevb.55.5404

Google Scholar

[17] Yamada TK , Bischoff MMJ, Mizoguchi T, Kempen HV. STM and STS study of ultrathin Mn layers on Fe(001). Surf Sci 2002; 516: 179.

DOI: 10.1016/s0039-6028(02)02032-0

Google Scholar

[18] Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992; 64: 1045.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[19] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996; 6: 15.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[20] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999; 59: 1758.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[21] Perdew J, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 1981; 23: 5048.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[22] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B1998; 57: 1505.

DOI: 10.1103/physrevb.57.1505

Google Scholar

[23] Stojic NL. Phase stability of Fe and Mn within density-functional theory plus on-site Coulomb interaction approaches. J. Magn. Magn. Mater 2008; 320: 100.

DOI: 10.1016/j.jmmm.2007.05.011

Google Scholar

[24] Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 1989; 40: 3616.

DOI: 10.1103/physrevb.40.3616

Google Scholar

[25] Press WH, Flannery BP, Teukolsky SA, Vetterling WT. New Numerical Recipes. 2nd ed. New York. Cambridge University Press; (1986).

DOI: 10.1007/bf01321860

Google Scholar

[26] Hafner J, Spišák D. Ab initio investigation of the magnetism of tetragonal Mn: Bulk, surface, ultrathin films, and multilayers. Phys Rev B 2005; 72: 144420.

DOI: 10.1103/physrevb.72.144420

Google Scholar

[27] Acet M, Zahres H, Wassermann EF, Pepperhoff W. High-temperature moment-volume instability and anti-Invar of γ-Fe. Phys Rev B 1994; 49: 6012.

DOI: 10.1103/physrevb.49.6012

Google Scholar

[28] Kittel C. Introduction to Solid State Physics. seventh ed. New York. Wiley; (1996).

Google Scholar

[29] Turner AM, Chang YJ, Erskine JL. Surface States and the Photoelectron Spin Polarization of Fe (100). Phys Rev Lett 1982; 48: 348.

DOI: 10.1103/physrevlett.48.348

Google Scholar