Response Spectrum 0.9-2.65 μm of In0.82Ga0.18As Detectors by Two-Step Growth Technique

Article Preview

Abstract:

InP/In0.82Ga0.18As/InP heterostructure used for infrared detector were grown on (100) S-doped InP substrates using two-step growth technique by low temperature metal-organic chemical vapor deposition. The growth was performed using TMIn, TMGa, AsH3, and PH3 as growth precursors in a horizontal reactor. The substrates on a graphite susceptor were heated by inductively coupling RF power, their temperatures were detected by a thermocouple, and the reactor pressure was kept at 10000 Pa. The growth structure of detector included In0.82Ga0.18As buffer with the thickness of 100 nm, In0.82Ga0.18As absorption layer with the thickness of 2.8 μm, and the InP cap with the thickness of 0.8 μm. The planar type of p-i-n detector was fabricated by Zn diffusion. The properties of In0.82Ga0.18As detector were studied, the curves of the I-V characteristics, the range of response spectrum, and the detectivity (D*) were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-213

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Nagai, Y. Noguchi, Appl. Phys. Lett. 1976; 29: 740.

Google Scholar

[2] S. Bandy, C. Nishimoto, S. Hyder, C. Hooper, Appl. Phys. Lett. 1981; 38: 817.

Google Scholar

[3] S.L. Murray, F.D. Newman, C.S. Murray, D.M. Wilt, M.W. Wanlass, P. Ahrenkiel, R. Messham, R.R. Siergiej, Semicond. Sci. Tech. 2003; 18: s202.

DOI: 10.1088/0268-1242/18/5/309

Google Scholar

[4] K.J. Bachmann, J.L. Shay, Appl. Phys. Lett. 1978; 32: 446.

Google Scholar

[5] R.W.M. Hoogeveen, R.J. van der A, A.P.H. Goede, Infrared Phys. Techn. 2001; 42: 1.

Google Scholar

[6] S. Durel, J. Caulet, M. Gauneau, B. Lambert, A. Le Corre, A. Poudoulec, D. Lecrosnier, 1990 Second International Conference on Indium Phosphide and Related Materials, pp.139-143.

DOI: 10.1109/iciprm.1990.203004

Google Scholar

[7] Y.G. Chai and R. Chow, J Appl. Phys. 1982; 53: 1229.

Google Scholar

[8] M. Wada and H. Hosomatsu, Appl. Phys. Lett. 1994; 64: 1265.

Google Scholar

[9] H.J. Ko, Y.F. Chen, J.M. Ko, T. Hanada, Z. Zhu, T. Fukuda, T. Yao, J. Cryst. Growth, 1999; 207: 87.

Google Scholar

[10] T. Zhang, G. Miao, Y. Jin, J. Xie, H. Jiang, Z. Li, H. Song, Microelectron. J. 2007; 38: 398.

Google Scholar

[11] T. Zhang, G. Miao, Y. Jin, H. Jiang, Z. Li, H. Song, J. Alloy. Compd. 2008; 458: 363.

Google Scholar

[12] T. Zhang, G. Miao, Y. Jin, S. Yu, H. Jiang, Z. Li, H. Song, J. Alloy. Compd. 2009; 472: 587.

Google Scholar

[13] W. Gao, P.R. Berger, M.H. Ervin, J. Pamulapati, R.T. Lareau, S. Schauer, J. Appl. Phys. 1996; 80: 7094.

Google Scholar

[14] T. Zhang, G. Miao, Y. Jin, S. Yu, H. Jiang, Z. Li, H. Song, Materials Science in Semiconductor Processing, 2009; 12: 156.

Google Scholar

[15] R.U. Martinelli and G.H. Olsen, J. Appl. Phys. 1976; 47: 1332.

Google Scholar