[1]
Henein H, Brimacombem J K., Watkinson A P. The modelling of transverse solids motion in rotary kiln[J]. Metall. Trans. B, 1983, 14: 207-220.
Google Scholar
[2]
Mellmann J. The transverse motion of solids in rotating cylinders—forms of motion and transition behaviour [J]. Powder Technology, 2001, 118: 251-270.
DOI: 10.1016/s0032-5910(00)00402-2
Google Scholar
[3]
Boateng A A, Barr P V. Modelling of particle mixing and segregation in the transverse plane of a rotary kiln. Chemical Engineering Science, 1996, 51(17): 4167-4181.
DOI: 10.1016/0009-2509(96)00250-3
Google Scholar
[4]
Liu X Y, Specht E, Mellmann J. Slumping-rolling transition of granular solids in rotary kilns[J]. Chemical Engineering Science, 2005, 60: 3629-3636.
DOI: 10.1016/j.ces.2005.02.020
Google Scholar
[5]
Van Puyvelde D R, Young B R, Wilson M A., Schmidt S J. Experimental determination of transverse mixing kinetics in a rolling drum by image analysis[J]. Powder Technology, 1999, 106: 183-191.
DOI: 10.1016/s0032-5910(99)00074-1
Google Scholar
[6]
Parker D J, Dijkstra A E, Martin T W. Positron emission particle tracking studies of spherical particle motion in rotating drums[J]. Chemical Engineering Science, 1997, 52: 2011-(2022).
DOI: 10.1016/s0009-2509(97)00030-4
Google Scholar
[7]
Ding Y L, Forster R N, Seville J P K, Parker D J. Solids motion in rolling mode rotating drums operated at low to medium rotational speeds[J]. Chemical Engineering Science, 2001, 56: 1769-1780.
DOI: 10.1016/s0009-2509(00)00468-1
Google Scholar
[8]
Ding Y L, Forster R N, Seville J P K, Parker D J. Granular motion in rotating drums: bed turnover time and slumping–rolling transition[J]. Powder Technology, 2002, 124: 18-27.
DOI: 10.1016/s0032-5910(01)00486-7
Google Scholar
[9]
Yan Jianhua, Li Shuiqing, Huang Shuitao. Simulation on axial transport and dispersion of MSW in rotary kiln[J]. Journal of Engineering Thermophysics, 2002, 23(3): 380-383.
Google Scholar
[10]
Yang R Y, Yu A B, McElroy L, Bao J. Numerical simulation of particle dynamics in different flow regimes in a rotating drum[J]. Powder Technology, 2008. 188: 170-177.
DOI: 10.1016/j.powtec.2008.04.081
Google Scholar
[11]
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29: 47-65.
DOI: 10.1680/geot.1979.29.1.47
Google Scholar
[12]
Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992 , 71: 239-250.
DOI: 10.1016/0032-5910(92)88030-l
Google Scholar
[13]
Mindlin, R.D., Deresiewicz, H. Elastic spheres in contact undervarying oblique forces[J]. Transactions of ASME, Series E. Journal of Applied Mechanics, 1953, 20: 327.
DOI: 10.1115/1.4010702
Google Scholar
[14]
Alberto Di Renzo, Francesco Paolo Di Maio. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59: 525-541.
DOI: 10.1016/j.ces.2003.09.037
Google Scholar
[15]
Dury C M, Ristow G H, Moss J L, M. Nakagawa. Boundary effects on the angle of repose in rotating cylinders[J]. Physical Review E, 1998, 57: 4491-4497.
DOI: 10.1103/physreve.57.4491
Google Scholar
[16]
Liu X Y, Specht E, Gongzalez O Guerra, Walzel P. Analytical solution for the rolling-mode granular motion in rotary kilns[J]. Chemical Engineering Science, 2006, 45: 515-521.
DOI: 10.1016/j.cep.2005.10.009
Google Scholar