Analysis of Particle Trajectory within Rotating Cylinders by DEM Simulation

Article Preview

Abstract:

Particle trajectory within rotating cylinders has been investigated in terms of radial positions by using the discrete element method (DEM). The dynamic information of particle groups has been obtained under a wide range of rotation speed by a method of particle marking and tracking. The results show a periodic way of inwards trend for particle motion within material bed. The period of particle motion is directly related to the rotation speed of the cylinder. However, the residence time of particles in the active layer shortens with periods, while that in the static zone prolongs. Moreover, the peak value of radial positions periodically decays, whereas the valley value periodically increases. This research laid a good foundation for further research on particle mixing and heat transport within the material bed in rotating cylinders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

552-557

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Henein H, Brimacombem J K., Watkinson A P. The modelling of transverse solids motion in rotary kiln[J]. Metall. Trans. B, 1983, 14: 207-220.

Google Scholar

[2] Mellmann J. The transverse motion of solids in rotating cylinders—forms of motion and transition behaviour [J]. Powder Technology, 2001, 118: 251-270.

DOI: 10.1016/s0032-5910(00)00402-2

Google Scholar

[3] Boateng A A, Barr P V. Modelling of particle mixing and segregation in the transverse plane of a rotary kiln. Chemical Engineering Science, 1996, 51(17): 4167-4181.

DOI: 10.1016/0009-2509(96)00250-3

Google Scholar

[4] Liu X Y, Specht E, Mellmann J. Slumping-rolling transition of granular solids in rotary kilns[J]. Chemical Engineering Science, 2005, 60: 3629-3636.

DOI: 10.1016/j.ces.2005.02.020

Google Scholar

[5] Van Puyvelde D R, Young B R, Wilson M A., Schmidt S J. Experimental determination of transverse mixing kinetics in a rolling drum by image analysis[J]. Powder Technology, 1999, 106: 183-191.

DOI: 10.1016/s0032-5910(99)00074-1

Google Scholar

[6] Parker D J, Dijkstra A E, Martin T W. Positron emission particle tracking studies of spherical particle motion in rotating drums[J]. Chemical Engineering Science, 1997, 52: 2011-(2022).

DOI: 10.1016/s0009-2509(97)00030-4

Google Scholar

[7] Ding Y L, Forster R N, Seville J P K, Parker D J. Solids motion in rolling mode rotating drums operated at low to medium rotational speeds[J]. Chemical Engineering Science, 2001, 56: 1769-1780.

DOI: 10.1016/s0009-2509(00)00468-1

Google Scholar

[8] Ding Y L, Forster R N, Seville J P K, Parker D J. Granular motion in rotating drums: bed turnover time and slumping–rolling transition[J]. Powder Technology, 2002, 124: 18-27.

DOI: 10.1016/s0032-5910(01)00486-7

Google Scholar

[9] Yan Jianhua, Li Shuiqing, Huang Shuitao. Simulation on axial transport and dispersion of MSW in rotary kiln[J]. Journal of Engineering Thermophysics, 2002, 23(3): 380-383.

Google Scholar

[10] Yang R Y, Yu A B, McElroy L, Bao J. Numerical simulation of particle dynamics in different flow regimes in a rotating drum[J]. Powder Technology, 2008. 188: 170-177.

DOI: 10.1016/j.powtec.2008.04.081

Google Scholar

[11] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29: 47-65.

DOI: 10.1680/geot.1979.29.1.47

Google Scholar

[12] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992 , 71: 239-250.

DOI: 10.1016/0032-5910(92)88030-l

Google Scholar

[13] Mindlin, R.D., Deresiewicz, H. Elastic spheres in contact undervarying oblique forces[J]. Transactions of ASME, Series E. Journal of Applied Mechanics, 1953, 20: 327.

DOI: 10.1115/1.4010702

Google Scholar

[14] Alberto Di Renzo, Francesco Paolo Di Maio. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59: 525-541.

DOI: 10.1016/j.ces.2003.09.037

Google Scholar

[15] Dury C M, Ristow G H, Moss J L, M. Nakagawa. Boundary effects on the angle of repose in rotating cylinders[J]. Physical Review E, 1998, 57: 4491-4497.

DOI: 10.1103/physreve.57.4491

Google Scholar

[16] Liu X Y, Specht E, Gongzalez O Guerra, Walzel P. Analytical solution for the rolling-mode granular motion in rotary kilns[J]. Chemical Engineering Science, 2006, 45: 515-521.

DOI: 10.1016/j.cep.2005.10.009

Google Scholar