Robust Reliable Control for a Class of Uncertain Discrete-Time Systems with Multiple Time-Varying Delays

Article Preview

Abstract:

The robust reliable control design problem of uncertain discrete-time control systems with multiple time-varying delays is addressed in this article. Uncertainty in system is assumed to satisfy the norm-bounded condition and the time-delay parameter is time-varying unstructured. Under the proposed concepts of exponentially robust stability and exponentially robust stabilization, the delay-dependent exponential stability condition for the robust reliable control system is derived and a new delay-dependent state feedback controller design method is provided. The relationship between system stability and time-delays is also studied. Simulation study shows the effectiveness and feasibility of the proposed controller design method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

396-401

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Jankovic, R. Sepulchre, P.V. Kokotovic, CLF based designs with robustness to dynamic input uncertainties, Syst. Contr. Lett. 37 (1999) 45-54.

DOI: 10.1016/s0167-6911(99)00006-7

Google Scholar

[2] C. Gong, B.K. Su, Delay-dependent robust H∞ control of convex polyhedral uncertain fuzzy systems, J. Syst. Eng. Electron. 19 (2008) 1191-1198.

DOI: 10.1016/s1004-4132(08)60218-2

Google Scholar

[3] M. Lu, H.H. Shao, Robust predictive control of polytopic uncertain systems with both state and input delays, J. Syst. Eng. Electron. 18 (2007) 616-621.

DOI: 10.1016/s1004-4132(07)60137-6

Google Scholar

[4] A. Lanzon, Weight optimisation in h-infinity loop-shaping, Automatica. 41 (2005) 1201- 1208.

Google Scholar

[5] C.W. Chen, K. Yeh, W.L. Chiang, C.Y. Chen, D.J. Wu, Modeling, h-infinity control and stability analysis for structural systems using takagi-sugeno fuzzy model, J. Vib. Contr. 13 (2007) 1519-1534.

DOI: 10.1177/1077546307073690

Google Scholar

[6] H.L. Gao, B.G. Xu, Delay-dependent state feedback robust stabilization for uncertain singular time-delay systems, J. Syst. Eng. Electron. 19 (2008) 758-765.

DOI: 10.1016/s1004-4132(08)60150-4

Google Scholar

[7] M.S. Mahmoud, S.A. Elferik, New stabilization schemes for linear hybrid systems with time-varying delays, IEEE. Trans. Automat. Contr. 132 (2010) 11.

DOI: 10.1115/1.4002102

Google Scholar

[8] G.L. Wei, Z.D. Wang, H.S. Shu, J.A. Fang, A delay-dependent approach to h-infinity ltering for stochastic delayed jumping systems with sensor non-linearities, Int. J. Contr. 80 (2007) 885-897.

DOI: 10.1080/00207170701203608

Google Scholar

[9] D.S. Du, B. Jiang, Robust H∞ output feedback controller design for uncertain discrete-time switched systems via switched Lyapunov functions, J. Syst. Eng. Electron. 18 (2007) 584- 590.

DOI: 10.1016/s1004-4132(07)60132-7

Google Scholar

[10] J.K. Hale, S.M.V. Lunel, Introduction to functional differential equations, first ed., Springer-Verlag, New York, (1993).

Google Scholar

[11] M. Jankovic, Control lyapunov-razumikhin functions and robust stabilization of time delay systems, IEEE. Trans. Automat. Contr. 46 (2001) 1048-1060.

DOI: 10.1109/9.935057

Google Scholar

[12] Y. Wang, L. Xie, C.E.D. Souza, Robust control of a class of uncertain nonlinear systems, Syst. Contr. Lett. 19 (1992) 139-149.

Google Scholar

[13] K. Jbilou, A. Messaoudi, K. Tabaa, Some schur complement identities and applications to matrix extrapolation methods, Lin. Algebra. Appl. 392 (2004) 195-210.

DOI: 10.1016/j.laa.2004.06.010

Google Scholar