Radiation Damage Effects in Si Materials and Detectors

Article Preview

Abstract:

Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, space charge concentration, and free carrier trapping. For LHC (Large Hadron Collider) applications, where the total fluence is in the order of 1x1015 neq/cm2 for 10 years, the increase in space charge concentration has been the main problem since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. For LHC Upgrade, or the sLHC, however, with an increased total fluence up to 1x1016 neq/cm2, the main limiting factor for Si detector operation is the severe trapping of free carriers by radiation-induced defect levels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

216-226

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Bruzzi et al.; Radiation-Hard Semiconductor Detectors for Super LHC; Nucl. Instr. and Meth. A 541 (2005) 189-201.

Google Scholar

[2] E. Verbitskaya et al, Nucl. Instr. and Meth. A 514 (2000) 47.

Google Scholar

[3] E. Gatti, G. Padovini, and V. Radeka, Nucl. Instr. and Meth. A 193 (1982) 651.

Google Scholar

[4] V. Radeka, Ann. Rev. Nucl. Part. Sci., 38 (1988) 217.

Google Scholar

[5] S. Parker, C. Kenney, and J. Segal, 3D—A proposed new architecture for solid-state radiation detectors, Nucl. Instr. and Meth., vol. A395, Aug. (1997) 328–343.

Google Scholar

[6] Z. Li and H.W. Kraner, Modeling and Simulation of Charge Collection Properties for Neutron Irradiated Silicon Detectors, Nucl. Phys. B (Proc. Suppl. ) 32 (1993) 398-409.

DOI: 10.1016/0920-5632(93)90052-8

Google Scholar

[7] H.W. Kraner et al., Nucl. Instr. and Meth. A326 (1993) 350-356.

Google Scholar

[8] V.A.J. van Lint, The physics of radiation damage in particle detectors, Nucl. Instr. & Meth., A253, 453 (1987).

Google Scholar

[9] H. W. Kraner et al., Nucl. Instrum. & Meth. A279, 266-271 (1989).

Google Scholar

[10] Zheng Li et al., IEEE Trans. Nucl. Sci. NS-39, No. 6 1730-1738 (1992).

Google Scholar

[11] E. Verbitskaya, et al, Competition of generation channels in reverse current of irradiated silicon detectors, Presented at the 3rd Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices, Florence, Italy, July (2000).

Google Scholar

[12] Z. Li, et al, Nucl. Inst. &d Meth., A308, (1991) 585.

Google Scholar

[13] B. Dezillie et al., IEEE Trans. Nucl. Vol. 46, No. 3, 221 (1999).

Google Scholar

[14] S. Pirollo et al., Nucl. Inst. & Meth., A426, 126-130 (1999).

Google Scholar

[15] V. Eremin and Z. Li, IEEE Trans. Nucl. Vol. 41, No. 6, 1907 (1994).

Google Scholar

[16] R. Wunstorf, Ph.D. Thesis, University of Hamburg, 1992, DESY FH1K-92-01.

Google Scholar

[17] Z. Li and H.W. Kraner, Nucl. Phys. B, 32 398-409 (1993).

Google Scholar

[18] Z. Li et al., IEEE Trans. Nucl. Sci., Vol. 42, No. 4, 219 (1995).

Google Scholar

[19] Z. Li et al., Nucl. Instrum. & Meth. A377, 265-275 (1996).

Google Scholar

[20] Z. Li, IEEE Trans. Nucl. Sci., Vol. 42, No. 4, 224 (1995).

Google Scholar

[21] Z. Li et al.; Study of Bulk Damage in High Resistivity Silicon Detectors Irradiated by High Dose of 60Co γ-Radiation, IEEE Trans. Nucl. Sci. NS-44, No. 3, 834 (1997).

DOI: 10.1109/23.603761

Google Scholar

[22] V. Eremin, et al., Nucl. Inst. & Meth., A476, 556-564 (2002).

Google Scholar

[23] B. MacEvoy, 3rd ROSE Workshop 12-14 Feb 98.

Google Scholar

[24] S. Lazanu et al., Nucl. Instrum. & Meth. A514 (2003) 9-17.

Google Scholar

[25] Z. Li et al., IEEE Trans. Nucl. Sci., Vol. 39, No. 6, (1992) 1730.

Google Scholar

[26] A. Ruzin and CERN Rd48 Collaboration, Nucl. Instrum. & Meth. A447, 116-125 (2000).

Google Scholar

[27] RD48 Status Report, CERN/LHCC 2000-009, December (1999).

Google Scholar

[28] G. Lindstroem and CERN RD48 Collaboration, Nucl. Instrum. & Meth. A466, 308 (2001).

Google Scholar

[29] G. Lindstroem, presented at the 9th European Symposium on Semiconductor Detectors, Schloss Elmau, June 23-27, 2002, . Instrum. & Meth. A512 (2003) 30-43.

Google Scholar

[30] B. Dezillie et al, IEEE Trans. Nucl. Sci., Vol. 47, No. 6, 1892-1897 (2000).

Google Scholar

[31] Z. Li et al, Nucl. Instrum. & Meth. A514 (2003) 25-37.

Google Scholar

[32] E. Fretwurst et al, Nucl. Instrum. & Meth. A514 (2003) 1-8.

Google Scholar

[33] Z. Li et al., Nucl. Inst. & Meth., A461 (2001) 126-132.

Google Scholar

[34] M. Huhtinen, ROSE/TN/2001-02.

Google Scholar

[35] I. Pintilie et al., Appl. Phys. Lett., 81, No. 1 (2002) 165.

Google Scholar

[36] I. Pintillie et al., Nucl. Instrum. & Meth. A514 (2003) 18-24.

Google Scholar

[37] J. Härkönen. et al., Nucl. Instr. and Meth. A 552 (2005) 43-48.

Google Scholar

[38] G. Casse, 3rd Workshop on Advanced Silicon Radiation Detectors (3D and P-type Technologies), April 14-16, 2008, Barcelona, Spain.

Google Scholar