Removal of Heavy Metals by Poly(Vinyl Pyrrolidone)/Laponite Nanocomposite Hydrogels

Article Preview

Abstract:

Laponite cross-linked poly(vinyl pyrrolidone) (PVP) hydrogels were fabricated by in situ polymerization of vinyl pyrrolidone (NVP). Macroporous PVP/Laponite nanocomposite hydrogels were obtained by freeze drying of hydrogels, which exhibited faster adsorption kinetics than ambient-dried ones. We also investigated the influence of laponite content, initial ion concentration and pH of the solution on the adsorption capacity of PVP/Laponite hydrogels. Moreover, the PVP/Lapnoite hydrogels can further be fabricated into powder hydrogel samples, which can be used as a potential candidate of adsorbent for removal of heavy metals in water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

291-297

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.S. Lee, J.H. Suh, Continuous biosorption of heavy metal ions by Ca-loaded laminaria japonica in fixed bed column, Korean J. Chem. Eng. 17 (2000) 477-479.

DOI: 10.1007/bf02706864

Google Scholar

[2] T.Y. Kim, S.K. Park, S.Y. Cho, H.B. Kim, Y. Kang, S.D. Kim, S.J. Kim, Adsorption of heavy metals by brewery biomass, Korean J. Chem. Eng. 22 (2005) 91-98.

DOI: 10.1007/bf02701468

Google Scholar

[3] H.N. Bhatti, I.I. Bajwa, M.A. Hanif, I.H. Bukhari, Removal of lead and cobalt using lignocellulosic fiber derived from citrus reticulate waste biomass, Korean J. Chem. Eng. 27 (2010) 218-227.

DOI: 10.1007/s11814-009-0325-1

Google Scholar

[4] M. Kazmi, N. Feroze, S. Naveed and S. H. Javed, Biosorption of copper(II) on prunus amygdalus shell: characterization, biosorbent size analysis, kinetic, equilibrium and mechanistic studies, Korean J. Chem. Eng. 28 (2011) 2033-(2040).

DOI: 10.1007/s11814-011-0072-y

Google Scholar

[5] M.S. Rahman, M.R. Islam, Effects of pH on isotherms modeling for Cu(II) ions adsorption using maple wood sawdust, Chem. Eng. J. 149 (2009) 273-280.

DOI: 10.1016/j.cej.2008.11.029

Google Scholar

[6] P. Das Saha, S. Chowdhury, S. Datta, S.K. Sanyal, Removal of Pb(II) from aqueous solutions by adsorption onto clayey soil of Indian origin: equilibrium, kinetic and thermodynamic profile, Korean J. Chem. Eng. 29 (2012) 1086-1093.

DOI: 10.1007/s11814-011-0300-5

Google Scholar

[7] E. Pehlivan, G. Arslan, Removal of metal ions using lignite in aqueous solution-low cost biosorbent, Fuel Processing Tech. 88 (2007) 99–106.

DOI: 10.1016/j.fuproc.2006.09.004

Google Scholar

[8] M. Jochová, M. Punčochář, J. Horáček, K. Štamberk, D. Vopálka, Removal of heavy metals from water by lignite-based sorbents, Fuel 83 (2004) 1197–1203.

DOI: 10.1016/j.fuel.2003.11.014

Google Scholar

[9] M. Dakiki, M. Khamis, A. Manassra, M. Mer'eb, Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. Environ. Res. 6 (2002) 533–540.

DOI: 10.1016/s1093-0191(01)00079-x

Google Scholar

[10] L. Doskočil, M. Pekař, Removal of metal ions from multi-component mixture using natural lignite, Fuel Processing Tech. 101 (2012) 29–34.

DOI: 10.1016/j.fuproc.2012.02.010

Google Scholar

[11] E.K. Yetimoglu, M. Firlak, M.V. Kahraman, S. Deniz, Removal of Pb2+ and Cd2+ ions from aqueous solutions using guanidine modified hydrogels. Polym. Adv. Tech. 22 (2011) 612-619.

DOI: 10.1002/pat.1554

Google Scholar

[12] S.P. Yang, S.Y. Fu, H. Liu, Y.M. Zhou, X.Y. Li, Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions. J. App. Polym. Sci. 119 (2011) 1204-1210.

DOI: 10.1002/app.32822

Google Scholar

[13] X.W. Peng, L.X. Zhong, J.L. Ren, R.C. Sun, Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel, J. Agric. Food Chem. 60 (2012) 3909-3916.

DOI: 10.1021/jf300387q

Google Scholar

[14] K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Adv. Mater. 14 (2002) 1120-1124.

DOI: 10.1002/1521-4095(20020816)14:16<1120::aid-adma1120>3.0.co;2-9

Google Scholar

[15] N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez-Manchado, Recent advances in clay/polymer nanocomposites, Adv. Mater. 23 (2011) 5229-5236.

DOI: 10.1002/adma.201101948

Google Scholar

[16] C. Viseras, P. Cerezo, R. Sanchez, I. Salcedo, C. Aguzzi, Current challenges in clay minerals for drug delivery, Appl. Clay Sci. 48 (2010) 291-295.

DOI: 10.1016/j.clay.2010.01.007

Google Scholar

[17] R. Toth, D.J. Voorn, J.W. Handgraaf, J.G.E.M. Fraaije, M. Fermeglia, S. Pricl, P. Posocco, Multiscale computer simulation studies of water-based montmorillonite/poly(ethylene oxide) nanocomposites, Macromolecules 42 (2009) 8260-8270.

DOI: 10.1021/ma901584w

Google Scholar

[18] K. Haraguchi, Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures, Polym. J. 43 (2011) 223-241.

DOI: 10.1038/pj.2010.141

Google Scholar

[19] M. Liu, W.D. Li, J.H. Rong, C. Zhou, Novel polymer nanocomposite hydrogel with natural clay nanotubes, Colloid Polym. Sci. 290 (2012) 895–905.

DOI: 10.1007/s00396-012-2588-z

Google Scholar

[20] J.J. Zhang, W.D. Li, J.H. Rong, Preparation and characterization of PVP/clay nanocomposite hydrogels, Chem. J. Chinese U. 31 (2010) 2081-(2087).

Google Scholar