Preheating Effects on Bi2S3 Morphology Synthesized via Hydrothermal Method

Article Preview

Abstract:

Bi2S3 nanorod, nanobelt and flowerlike patterns were synthesized via a facile hydrothermal approach without using any surfactant and acid. The morphology, structure, phase composition, and photoluminescence properties of the as-prepared Bi2S3 products were characterized using various techniques (scanning electron microscopy, X-ray diffraction, and photoluminescence spectroscopy). The experimental results showed that the preheating process had a great effort on the morphology of the product.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

298-302

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M. Zhou, X. H. Zhang, X. M. Meng, X. Fan, K. Zhou, S. K. Wu, S. T. Lee, Nanotechnology, 15(9), 1152-1155, (2004).

Google Scholar

[2] S. M. Zhou, X. H. Zhang, X. M. Meng, S. T. Lee, S. K. Wu, Phys. Stat. Sol. (a): 202(3): 405-410, (2005).

Google Scholar

[3] S. M. Zhou, H. C. Gong, B. Zhang, Z . L. Du, X. T. Zhang, S. X. Wu, Nanotechnology, 19(17), 175303, (2008).

Google Scholar

[4] B.B. Nayak, H.N. Acharya, G.B. Mitra, B.K. Mathur, Thin Solid Films 105 (1983) 17-24.

Google Scholar

[5] H. Cui, X. Liu, X. Li, J. Wang, F. Han, X. Zhang, et al., J. Solid State Chem. 177 (2004) 4001-4006.

Google Scholar

[6] B. X. Chen, C. Uher, Chem. Mater, 9: 1655-1658, (1997).

Google Scholar

[7] Rabin, O; Perez, J. M.; Grimm, J; Wojtkiewicz, G; Weissleder, R. Nat. Mater. 2006, 5, 117.

Google Scholar

[8] B. Zhang, X.C. Ye, W. Y. Hou, Y. Zhao, Y. Xie, J. Phys. Chem. B, 110: 8978-8985, (2006).

Google Scholar

[9] R. R. Ahire, N. G. Deshpande, Y. G. Gudage, A. A. Sagade, S. D. Chavhan, D.M. Phase, Ramphal Sharma, Sensors and Actuators A, 140: 207-214, (2007).

DOI: 10.1016/j.sna.2007.06.039

Google Scholar

[10] Yue Wang, Jing Chen, Peng Wang, Ling Chen, Yu-Biao Chen, Li-Ming Wu, J. Phys. Chem. C, 113: 16009-16014, (2009).

Google Scholar

[11] Anukorn Phuruangrat, Titipun Thongtem, Somchai Thongtem, Materials Letters 63 (2009) 1496-1498.

DOI: 10.1016/j.matlet.2009.03.051

Google Scholar

[12] Jing Tang and A. Paul Alivisatos, Nano Letters, 6(12): 2701-2706, (2006).

Google Scholar

[13] Lu J, Han Q, Yang X, Lu L, Wang X. Mater Lett 2007; 61: 3425-8.

Google Scholar

[14] Dong L, Chu Y, Zhang W. Mater Lett 2008; 62: 4269-72.

Google Scholar

[15] Lihong Dong , Ying Chu , Wei Zhang, Materials Letters 62 (2008) 4269-4272.

Google Scholar

[16] Xuebo Caoa, Xianmei Lana, Cui Zhaoa, Wenjun Shena, Dan Yaoa, Weijian Gao, Journal of Crystal Growth 306 (2007) 225-232.

Google Scholar

[17] Vitalie Stavila, Kenton H. Whitmire, Irene Rusakova, Chem. Mater. 2009, 21, 5456-5465.

Google Scholar

[18] Yan Sun, Qiaofeng Han, Juan Lu, Xujie Yang, Lude Lu, Xin Wang, Materials Letters 2008, 62, 3730-3732.

Google Scholar

[19] J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, Y.T. Qian, Adv. Mater. 12 (2000) 1348−1351.

Google Scholar

[20] Yongbin Xu, Zhongming Ren, Guanghui Cao, Weili Ren, Kang Deng, Yunbo Zhong, Physica B 2010, 405, 1353-1358.

Google Scholar