The Microstructure and Properties of Ti50Ni47Fe3 and Ti50Ni46.75Fe3Cr0.25 Shape Memory Alloy

Article Preview

Abstract:

Comparing with Ti50Ni47Fe3 alloys, the influences of Cr on the mechanical and shape memory properties of Ti50Ni47Fe3 alloys are investigated by study on phase transformation and microstructure analysis. The results show that Ti50Ni47Fe3 and Ti50Ni46.75Fe3Cr0.25 shape memory alloys exhibit two-stage martensitic transformation. The transformation temperatures decrease with the addition of Cr. The microstructure of the Ti50Ni47Fe3 and Ti50Ni46.75Fe3Cr0.25 alloys consists of TiNi matrix, Ti2Ni phase. Fe element prefers to substitute for Ni in the matrix than black particles. Cr all substitute for Ni in the matrix and not be analyzed in the Ti2Ni phase. The mechanical property of Ti50Ni46.75Fe3Cr0.25 alloy is better than Ti50Ni47Fe3 alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

326-330

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Otsuka K, Ren X: Intermetallics. Vol. 7 (1999), p.511.

Google Scholar

[2] Humbeeck J V: Mater. Sci. Eng., A. Vol. 273-275 (1999), p.134.

Google Scholar

[3] Jose Maria GallardoFuentes, Paul Gumpel, Joachim Strittmatter: Adv. Eng. Mater. Vol. 7 (2002), p.437.

Google Scholar

[4] T. Hara, T. Ohba, E. Okunishi, et al: Mater. Trans. JIM. Vol. 38 (1997), p.11.

Google Scholar

[5] Kurita T, Matsumoto H, Sakamoto K, et al: J. Alloys Compd. Vol. 396 (2005), p.193.

Google Scholar

[6] Hsieh S F, Wu S K: Mater. Character. Vol. 41 (1998), p.154.

Google Scholar

[7] J.J. Wang, T. Omori, Y. Sutou, R. Kainuma, K. Ishida: Scr. Mater. Vol. 52 (2005), p.311.

Google Scholar

[8] Tae Hyun Nam, Toshio Saburi and Ken'ichi Shimizu: Mater. Trans. JIM. Vol. 31 (1990), p.959.

Google Scholar

[9] M. Piao, S. Miyazaki, K. Otsuka: Mater. Trans. JIM. Vol. 34 (1993), p.919.

Google Scholar

[10] J. Frenzel, J. Pfetzing, K. Neuking, G. Eggeler: Mater. Sci. Eng., A. Vol. 482-440 (2008), p.635.

Google Scholar

[11] S.F. Hsieh, S.L. Chen, S.L. Chen, H.C. Lin, M.H. Lin, J.H. Huang, M.C. Lin: J. Alloys Compd. Vol. 494 (2010), p.155.

Google Scholar

[12] L.I. Duarte, U.E. Klotz, C. Leinenbach, M. Palm. F. Stein, J.F. Loffler: Intermetallics. Vol. 18 (2010), p.374.

Google Scholar

[13] E. Hornbogen: Acta Metall. Mater. Vol. 33 (1985), p.595.

Google Scholar

[14] S. Eucken, E. Hornbogen: J. Mater. Sci. Vol. 19 (1984), p.1343.

Google Scholar