[1]
A. Choi, W. Termin, M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
DOI: 10.1021/j100102a038
Google Scholar
[2]
K.X. Wang, B.D. Yao, M.A. Morris, Supercritical Fluid Processing of Thermally Stable Mesoporous Titania Thin Films with Enhanced Photocatalytic Activity, J.D. Holmes, Chem. Mater. 17 (2005) 4825-4831.
DOI: 10.1021/cm0508571
Google Scholar
[3]
Y. Hu, C.W. Yuan, Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols, J. Cryst. Growth 274 (2005) 563-568.
Google Scholar
[4]
R.J. Candal, W.A. Zeltner, M.A. Anderson, Effects of pH and Applied Potential on Photocurrent and Oxidation Rate of Saline Solutions of Formic Acid in a Photoelectrocatalytic Reactor, Environ. Sci. Technol. 34 (2000) 3443-3451.
DOI: 10.1021/es991024c
Google Scholar
[5]
M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, Unprecedented ultra-high hydrogen gassensitivity in undoped titania nanotubes, Nanotechnology. 17 (2006) 398-402.
DOI: 10.1088/0957-4484/17/2/009
Google Scholar
[6]
X. Quan, S. G. Yang, X. L. Ruan, H. M. Zhao, Preparation of titania nanotubes and their environmental applications as electrode, Environ. Sci. Technol. 39 (2005) 3770-3775.
DOI: 10.1021/es048684o
Google Scholar
[7]
C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte, J. Phys. Chem. B. 109 (2005) 15754-15759.
DOI: 10.1021/jp052736u
Google Scholar
[8]
D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, ACS Nano. 2 (2008) 1113-1116.
DOI: 10.1021/nn800174y
Google Scholar
[9]
M. Paulosea, L. Peng, K.C. Popatb, O.K. Varghesed, T.J. LaTempaa, N. Bao, T.A. Desaic, C.A. Grimes, Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes, J. Membr. Sci. 319 (2008) 199-205.
DOI: 10.1016/j.memsci.2010.09.011
Google Scholar
[10]
O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res. 18 (2003) 156-165.
DOI: 10.1557/jmr.2003.0022
Google Scholar
[11]
A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Annealing effects on the photoresponse of TiO2 nanotubes, Phys. Stat. Sol. (a) 203 (2006) R28-R30.
DOI: 10.1002/pssa.200622041
Google Scholar
[12]
B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[13]
S.T. Aruna, S. Tirosh, A. Zaban, Nanosize rutile titania particle synthesis viaa hydrothermal method without mineralizers, J. Mater. Chem. 10 (2000) 2388-2391.
DOI: 10.1039/b001718n
Google Scholar
[14]
H. Yin, Y. Wada, T. Kitamura, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, Hydrothermal synthesis of anatase and rutile nanocrystallites from amorphous phase, J. Mater. Chem. 11 (2001) 1694-1703.
DOI: 10.1039/b008974p
Google Scholar
[15]
K. Yanagisawa, Y. Yamamoto, Q. Feng, N. Yamasaki, Formation mechanism of fine anatase crystals from amorphous titania under hydrothermal conditions, J. Mater. Res. 13 (1998) 825-829.
DOI: 10.1557/jmr.1998.0106
Google Scholar
[16]
Z. Zhang, G. Triani, L. Fan. Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C, J. Mater. Res. 23 (2008) 2472-2479.
DOI: 10.1557/jmr.2008.0297
Google Scholar
[17]
S.H. Kang, J. Kim, H.S. Kim, Y. Sung, Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate, Journal of industrial and engineering Chemistry. 14 (2008) 52-59.
DOI: 10.1016/j.jiec.2007.06.004
Google Scholar
[18]
J.G. Yu, W. Liu, H.G. Yu, Cryst. A One-Pot Approach to Hierarchically Nanoporous Titania Hollow Microspheres with High Photocatalytic Activity, Growth Des. 8 (2008) 930-934.
DOI: 10.1021/cg700794y
Google Scholar
[19]
J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater. 14 (2002) 3808-3816.
DOI: 10.1021/cm020027c
Google Scholar
[20]
J.G. Yu, M.H. Zhou, B. Cheng, H.G. Yu, X.J. Zhao, Ultrasonic preparation of mesoporoustitanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity, J. Mol. Catal. A 227 (2005) 75-80.
DOI: 10.1016/j.molcata.2004.10.012
Google Scholar
[21]
S.C. Liao, W.E. Mayo, K.D. Pae, Theory of high pressure/low temperature sintering of bulk nanocrystalline TiO2, Acta Mater. 45 (1997) 4027-4040.
DOI: 10.1016/s1359-6454(97)00087-6
Google Scholar