Effects of Hydrothermal Crystallization on the Morphologies and Photocatalytic Activity of TiO2 Nanotubes

Article Preview

Abstract:

Anatase titania (TiO2) films with highly photocatalytic activity were prepared by hydrothermal treatment of amorphous TiO2 nanotubes (NTs) via electrochemical anodization of titanium (Ti) in fluorine-containing electrolyte. The as-prepared TiO2 films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The photocatalytic activity of the as-prepared TiO2 films was evaluated by the photocatalytic degradation of methyl orange (MO) aqueous under UV-light irradiation. The effects of hydrothermal temperature and time on the morphologies, microstructure and photocatalytic activity of TiO2 films were investigated and discussed. It was found that TiO2 NTs were converted to nanoparticles after hydrothermal treatment. The mechanism of deformation of TiO2 NTs was discussed. Hydrothermal treatment enhances the phase transformation of TiO2 films from amorphous to anatase and crystallization of anatase. An optimal hydrothermal condition (150 oC for 8 h) was determined. The anatase TiO2 films prepared under optimal hydrothermal conditions posses larger surface area and higher relative anatase crystallinity and its photocatalytic activity is higher than that of anatase TiO2 films prepared under other hydrothermal conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

504-510

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Choi, W. Termin, M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[2] K.X. Wang, B.D. Yao, M.A. Morris, Supercritical Fluid Processing of Thermally Stable Mesoporous Titania Thin Films with Enhanced Photocatalytic Activity, J.D. Holmes, Chem. Mater. 17 (2005) 4825-4831.

DOI: 10.1021/cm0508571

Google Scholar

[3] Y. Hu, C.W. Yuan, Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols, J. Cryst. Growth 274 (2005) 563-568.

Google Scholar

[4] R.J. Candal, W.A. Zeltner, M.A. Anderson, Effects of pH and Applied Potential on Photocurrent and Oxidation Rate of Saline Solutions of Formic Acid in a Photoelectrocatalytic Reactor, Environ. Sci. Technol. 34 (2000) 3443-3451.

DOI: 10.1021/es991024c

Google Scholar

[5] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, Unprecedented ultra-high hydrogen gassensitivity in undoped titania nanotubes, Nanotechnology. 17 (2006) 398-402.

DOI: 10.1088/0957-4484/17/2/009

Google Scholar

[6] X. Quan, S. G. Yang, X. L. Ruan, H. M. Zhao, Preparation of titania nanotubes and their environmental applications as electrode, Environ. Sci. Technol. 39 (2005) 3770-3775.

DOI: 10.1021/es048684o

Google Scholar

[7] C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte, J. Phys. Chem. B. 109 (2005) 15754-15759.

DOI: 10.1021/jp052736u

Google Scholar

[8] D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, ACS Nano. 2 (2008) 1113-1116.

DOI: 10.1021/nn800174y

Google Scholar

[9] M. Paulosea, L. Peng, K.C. Popatb, O.K. Varghesed, T.J. LaTempaa, N. Bao, T.A. Desaic, C.A. Grimes, Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes, J. Membr. Sci. 319 (2008) 199-205.

DOI: 10.1016/j.memsci.2010.09.011

Google Scholar

[10] O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res. 18 (2003) 156-165.

DOI: 10.1557/jmr.2003.0022

Google Scholar

[11] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Annealing effects on the photoresponse of TiO2 nanotubes, Phys. Stat. Sol. (a) 203 (2006) R28-R30.

DOI: 10.1002/pssa.200622041

Google Scholar

[12] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[13] S.T. Aruna, S. Tirosh, A. Zaban, Nanosize rutile titania particle synthesis viaa hydrothermal method without mineralizers, J. Mater. Chem. 10 (2000) 2388-2391.

DOI: 10.1039/b001718n

Google Scholar

[14] H. Yin, Y. Wada, T. Kitamura, S. Murasawa, H. Mori, T. Sakata, S. Yanagida, Hydrothermal synthesis of anatase and rutile nanocrystallites from amorphous phase, J. Mater. Chem. 11 (2001) 1694-1703.

DOI: 10.1039/b008974p

Google Scholar

[15] K. Yanagisawa, Y. Yamamoto, Q. Feng, N. Yamasaki, Formation mechanism of fine anatase crystals from amorphous titania under hydrothermal conditions, J. Mater. Res. 13 (1998) 825-829.

DOI: 10.1557/jmr.1998.0106

Google Scholar

[16] Z. Zhang, G. Triani, L. Fan. Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C, J. Mater. Res. 23 (2008) 2472-2479.

DOI: 10.1557/jmr.2008.0297

Google Scholar

[17] S.H. Kang, J. Kim, H.S. Kim, Y. Sung, Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate, Journal of industrial and engineering Chemistry. 14 (2008) 52-59.

DOI: 10.1016/j.jiec.2007.06.004

Google Scholar

[18] J.G. Yu, W. Liu, H.G. Yu, Cryst. A One-Pot Approach to Hierarchically Nanoporous Titania Hollow Microspheres with High Photocatalytic Activity, Growth Des. 8 (2008) 930-934.

DOI: 10.1021/cg700794y

Google Scholar

[19] J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater. 14 (2002) 3808-3816.

DOI: 10.1021/cm020027c

Google Scholar

[20] J.G. Yu, M.H. Zhou, B. Cheng, H.G. Yu, X.J. Zhao, Ultrasonic preparation of mesoporoustitanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity, J. Mol. Catal. A 227 (2005) 75-80.

DOI: 10.1016/j.molcata.2004.10.012

Google Scholar

[21] S.C. Liao, W.E. Mayo, K.D. Pae, Theory of high pressure/low temperature sintering of bulk nanocrystalline TiO2, Acta Mater. 45 (1997) 4027-4040.

DOI: 10.1016/s1359-6454(97)00087-6

Google Scholar