[1]
B. O'Regan and M. Grätzel, A low cost, high efficiency solar cell based on the sensitization of colloidal titanium dioxide, Nature. 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[2]
A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells, Phys. Chem. Chem. Phys. 8 (2006) 4655-4659.
DOI: 10.1039/b610566a
Google Scholar
[3]
D. Niinobe, Y. Makari, T. Kitamura, Y. Wada, and S. Yanagida, Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells, J. Phys. Chem. 109 (2005) 17892-17900.
DOI: 10.1021/jp051753g
Google Scholar
[4]
F. Lenzmann, J. Krueger, S. Burnside, K. Brook, M. Grätzel, D. Gal, S. Ruhle, and D. Cahen, Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO, NbO, and SrTiO nanocrystalline photoanodes: Indication for electron injection from higher excited dye states, J. Phys. Chem. B. 105 (2001).
DOI: 10.1021/jp010380q
Google Scholar
[5]
S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, and J. R. Durrant, Flexible dye sensitized nanocrystalline semiconductor solar cells, Chem. Commun. 24 (2003) 3008-3009.
DOI: 10.1039/b308529e
Google Scholar
[6]
J. Jiu, F. Wang, S. Isoda, and M. Adachi, Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film, Chem. Lett. 34, (2005) 1506-1507.
DOI: 10.1246/cl.2005.1506
Google Scholar
[7]
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4 (2005) 455-459.
DOI: 10.1038/nmat1387
Google Scholar
[8]
A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Nazeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science. 334 (2011).
DOI: 10.1126/science.1209688
Google Scholar
[9]
G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energ. Mat. Sol. C. 90 (2006).
DOI: 10.1016/j.solmat.2006.04.007
Google Scholar
[10]
P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale. 2 (2010) 45-59.
DOI: 10.1039/b9nr00131j
Google Scholar
[11]
V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physical chemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal. 27 (1999) 629-637.
DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0
Google Scholar
[12]
H. E. prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, A New Benchmark for TiO2 Nanotube Array Growth by Anodization, J. Phys. Chem. C. 111 (2007) 7235-7241.
DOI: 10.1021/jp070273h
Google Scholar
[13]
A. J. Leenheer, A. Miedaner, C. J. Curtis, Maikel F. A. M. van Hest, and D. S. Ginley, Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films, J. Mater. Res. 22 (2007) 681-687.
DOI: 10.1557/jmr.2007.0078
Google Scholar
[14]
G. K. Mor, O. K. Varghese, M. Paulose, and G. A. Grimes, Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films, Adv. Funct. Mater. 15 (2005) 1291-1296.
DOI: 10.1002/adfm.200500096
Google Scholar
[15]
G. K. Mor, K. Shanker, O. K. Varghese, M. Paulose, and G. A. Grimes, Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett. 6 (2006) 215-218.
DOI: 10.1021/nl052099j
Google Scholar
[16]
L. Tao, Y. Xiong, H. Liu, and W. Shen, Chemical assisted formation of secondary structures towards high efficiency solar cells based on ordered TiO2 nanotube arrays, J. of Mater. Chem. 22 (2012) 7863-7870.
DOI: 10.1039/c2jm00005a
Google Scholar
[17]
N. Satoh, T. Nakashima, and K. Yamamoto, Metal-Assembling Dendrimers with a Triarylamine Core and Their Application to a Dye-Sensitized Solar Cell, J. Am. Chem. Soc. 127 (2007) 13030-13038.
DOI: 10.1021/ja050765c
Google Scholar
[18]
P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, and J. M. Kroon, Long-term stability testing of dye-sensitized solar cells, J. Photochem. Photobio. A: Chem. 164 (2004) 137-144.
DOI: 10.1016/j.jphotochem.2003.12.017
Google Scholar
[19]
A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer and J. Ferber, Long-term stability of dye-sensitised solar cells, Pro. Photovolt: Res. Appl. 9 (2005) 425-438.
DOI: 10.1002/pip.397
Google Scholar
[20]
D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, and K. Domen, Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature, Nano Lett. 11 (2011) 3649-3655.
DOI: 10.1021/nl2015262
Google Scholar
[21]
A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, Carl-Albrecht Schiller, Polycarpos Falaras, and Partrik Schmuki, TiO2 Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency, Chem. Asian J. 4 (2009).
DOI: 10.1002/asia.200800441
Google Scholar