Characterization of N719 Dye Desorption on TiO2 Nanotube Arrays Used for Dye-Sensitized Solar Cells

Article Preview

Abstract:

In this work, we developed a method to quantitative analyze the absorption and desorption of N719 dye on TiO2 nanotube arrays. TiO2 nanotube arrays were fabricated by anodizing titanium foils in an organic electrolyte using a two-electrode configuration with a platinum mesh as the counter electrode. TiO2 nanotube arrays were then annealed under 450 °Cfor 3 hours and immersed in N719 dye solution for 24 hours. The dye-sensitized TiO2 nanotube arrays were soaked in an electrolyte solution and stored in a dark closed vessel for 76 days. Then they were desorbed by KOH solution (pH=10). According to UV-visible absorption spectra and Lambert-Beer's law, the desorption rate of N719 dye on 9 µm thick TiO2 nanotube arrays was calculated to be 36%. The results provide a valuable reference to study the dye desorption and stability of the dye-sensitized solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

524-529

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel, A low cost, high efficiency solar cell based on the sensitization of colloidal titanium dioxide, Nature. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells, Phys. Chem. Chem. Phys. 8 (2006) 4655-4659.

DOI: 10.1039/b610566a

Google Scholar

[3] D. Niinobe, Y. Makari, T. Kitamura, Y. Wada, and S. Yanagida, Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells, J. Phys. Chem. 109 (2005) 17892-17900.

DOI: 10.1021/jp051753g

Google Scholar

[4] F. Lenzmann, J. Krueger, S. Burnside, K. Brook, M. Grätzel, D. Gal, S. Ruhle, and D. Cahen, Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO, NbO, and SrTiO nanocrystalline photoanodes: Indication for electron injection from higher excited dye states, J. Phys. Chem. B. 105 (2001).

DOI: 10.1021/jp010380q

Google Scholar

[5] S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes, and J. R. Durrant, Flexible dye sensitized nanocrystalline semiconductor solar cells, Chem. Commun. 24 (2003) 3008-3009.

DOI: 10.1039/b308529e

Google Scholar

[6] J. Jiu, F. Wang, S. Isoda, and M. Adachi, Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film, Chem. Lett. 34, (2005) 1506-1507.

DOI: 10.1246/cl.2005.1506

Google Scholar

[7] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4 (2005) 455-459.

DOI: 10.1038/nmat1387

Google Scholar

[8] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Nazeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science. 334 (2011).

DOI: 10.1126/science.1209688

Google Scholar

[9] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energ. Mat. Sol. C. 90 (2006).

DOI: 10.1016/j.solmat.2006.04.007

Google Scholar

[10] P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale. 2 (2010) 45-59.

DOI: 10.1039/b9nr00131j

Google Scholar

[11] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physical chemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal. 27 (1999) 629-637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[12] H. E. prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, A New Benchmark for TiO2 Nanotube Array Growth by Anodization, J. Phys. Chem. C. 111 (2007) 7235-7241.

DOI: 10.1021/jp070273h

Google Scholar

[13] A. J. Leenheer, A. Miedaner, C. J. Curtis, Maikel F. A. M. van Hest, and D. S. Ginley, Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films, J. Mater. Res. 22 (2007) 681-687.

DOI: 10.1557/jmr.2007.0078

Google Scholar

[14] G. K. Mor, O. K. Varghese, M. Paulose, and G. A. Grimes, Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films, Adv. Funct. Mater. 15 (2005) 1291-1296.

DOI: 10.1002/adfm.200500096

Google Scholar

[15] G. K. Mor, K. Shanker, O. K. Varghese, M. Paulose, and G. A. Grimes, Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells, Nano Lett. 6 (2006) 215-218.

DOI: 10.1021/nl052099j

Google Scholar

[16] L. Tao, Y. Xiong, H. Liu, and W. Shen, Chemical assisted formation of secondary structures towards high efficiency solar cells based on ordered TiO2 nanotube arrays, J. of Mater. Chem. 22 (2012) 7863-7870.

DOI: 10.1039/c2jm00005a

Google Scholar

[17] N. Satoh, T. Nakashima, and K. Yamamoto, Metal-Assembling Dendrimers with a Triarylamine Core and Their Application to a Dye-Sensitized Solar Cell, J. Am. Chem. Soc. 127 (2007) 13030-13038.

DOI: 10.1021/ja050765c

Google Scholar

[18] P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, and J. M. Kroon, Long-term stability testing of dye-sensitized solar cells, J. Photochem. Photobio. A: Chem. 164 (2004) 137-144.

DOI: 10.1016/j.jphotochem.2003.12.017

Google Scholar

[19] A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer and J. Ferber, Long-term stability of dye-sensitised solar cells, Pro. Photovolt: Res. Appl. 9 (2005) 425-438.

DOI: 10.1002/pip.397

Google Scholar

[20] D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, and K. Domen, Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature, Nano Lett. 11 (2011) 3649-3655.

DOI: 10.1021/nl2015262

Google Scholar

[21] A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, Carl-Albrecht Schiller, Polycarpos Falaras, and Partrik Schmuki, TiO2 Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency, Chem. Asian J. 4 (2009).

DOI: 10.1002/asia.200800441

Google Scholar