[1]
N. R. Barton, Review of a new shear strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332.
DOI: 10.1016/0013-7952(73)90013-6
Google Scholar
[2]
B.B. Mandelbrot, The fractal of nature[M]. New York: [s. n. ], (1983).
Google Scholar
[3]
N. Fardin, The effect of tortusosity on fluidflow through a single fracture [J]. Water Resour. Resear., 1984, 20(9): 1209-1215.
Google Scholar
[4]
W.A. Unstrulid and G.A. Johnson, Rock mechanics contributions and challenges[C]. Proceeding of the 31st US symposium on rock mechanics. Rotterdam: A.A. Balkema, 1990: 471-478.
Google Scholar
[5]
X B Xiong, C H Zhang, E Z Wang. A review of steady state seepage in a single fracture of rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1839-1847.
Google Scholar
[6]
G M. Lomize, Flow in Fractured Rocks [M]. Moscow: Gesenergoizdat, (1951).
Google Scholar
[7]
C. Louis, A study of groundwater flow in jointed rock and its influence on the stability of rock masses [R]. London: Imp. Coll., (1969).
Google Scholar
[8]
Y R Liu and H M Tang, Rock Mass Mechanics [M]. Wuhan: China University of Geosciences Press, (1999).
Google Scholar
[9]
C E Neuzil and J V. Tracy, Flow through fractures[J]. Water Resour. Resear., 1981, 17(1): 191-194.
Google Scholar
[10]
Y W. Tsang and P A. Witherspoon. The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size[J]. J. of Geophys. Research, 1983, 88(B3): 2359-2366.
DOI: 10.1029/jb088ib03p02359
Google Scholar
[11]
Y W. Tsang. The effect of tortusosity on fluidflow through a single fracture [J]. Water Resour. Resear., 1984, 20(9): 1209-1215.
Google Scholar
[12]
D Elsworth and R E. Goodman, Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles [J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1986, 23(3): 233-243.
DOI: 10.1016/0148-9062(86)90969-1
Google Scholar
[13]
N Barton, S Bandis and K Bakhtar, Strength, deformation and conductivity coupling of rock joints[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1985, 22(3): 121-140.
DOI: 10.1016/0148-9062(85)93227-9
Google Scholar
[14]
C B Zhou and W L. Xiong, A generalized cubic law for percolation in rock joints [J]. Rock and soil mechanics, 1996, 17(4): 1-7.
Google Scholar
[15]
N R. Barton, A model study of rock joint deformation[J]. Int. J. Rock Mech., 1972, 9: 579-602.
Google Scholar
[16]
J. Zhao, Joint surface matching and shear strength. Part A: joint matching coefficient(JMC) [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1997, 34(2): 173-178.
DOI: 10.1016/s0148-9062(96)00062-9
Google Scholar
[17]
J. Zhao, Joint surface matching and shear strength. Part B: JMC-JRC shear strength criterion [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1997, 34(2): 179-185.
DOI: 10.1016/s0148-9062(96)00063-0
Google Scholar
[18]
Y W Tsang and P A. Witherspoon, Correlation between fracture roughness characteristics and fracture mechanical and fluid flow properties[C]. Proc. 23rd US Symp. on Rock Mech., 1982: 560-567.
Google Scholar
[19]
S Bandis, A C Lumsden and N R. Barton, Fundamentals of rock joint deformation [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1983, 20: 249-268.
DOI: 10.1016/0148-9062(83)90595-8
Google Scholar
[20]
J. Zhao and E T Brown, Hydro thermo mechanical properties of joints in the Carnmenellis granite [J]. Engng. Geol., 1992, 25: 376-388.
DOI: 10.1144/gsl.qjeg.1992.025.04.03
Google Scholar