Study on the Laser Characteristics for Calibration-Free Wavelength Modulation Spectroscopy

Article Preview

Abstract:

In this paper, a calibration-free wavelength modulation model via tunable diode laser absorption spectroscopy was setup. The laser modulation characteristics, modulation depth, linear modulation amplitude and frequency shift, were measured for the model setup. The experimental results show that modulation depth and the linear intensity modulation amplitude have well linear fitting to the scan voltage. Based on the laser parameters, the calibration-free model can be used to infer the gas temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

982-987

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. C. Philippe, R. K. Hanson. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows, Appl. Optics. 32 (1993) 6090–6103.

DOI: 10.1364/ao.32.006090

Google Scholar

[2] Z. Peng, Y. Ding, L. Che, X. Li, et al. Calibtation-free wavelength modulated TDLAS under high absorbance conditions, Opt. Express. 19 (2011) 23104-23110.

DOI: 10.1364/oe.19.023104

Google Scholar

[3] H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases, Appl. Optics. 45 (2006) 1052-1061.

DOI: 10.1364/ao.45.001052

Google Scholar

[4] H. Li, A. Farooq, J. B. Jeffries, et al. Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in shock tube, Appl Phys B. 89 (2007) 407–416.

DOI: 10.1007/s00340-007-2781-9

Google Scholar

[5] G. B. Rieker, J. B. Jeffries, R. K. Hanson. Calibration-free wavelength modulation spectroscopy for measurements of gas temperature and concentration in harsh environments, Appl Optics. 48 (2009) 5546–5560.

DOI: 10.1364/ao.48.005546

Google Scholar

[6] L. S. Chang, J. B. Jeffries, R. K. Hanson. Mass flux sensing via tunable diode laser absorption of water vapor, AIAA J. 48 (2010) 2687–2693.

DOI: 10.2514/1.j050544

Google Scholar

[7] L. S. Chang, C. L. Strand, J. B. Jeffries, et al. Supersonic mass-flux measurements via tunable diode laser absorption and nonuniform flow modeling, AIAA J. 49 (2011) 2783-2791.

DOI: 10.2514/1.j051118

Google Scholar

[8] L. S. Rothman, I. E. Gordon, A. Barbe, et al. The HITRAN 2008 molecular spectroscopic database, J Quant Spectrosc Ra. 110 (2009) 533–572.

Google Scholar

[9] P. C. Hansen, M. S. Hansen. AIR Tools - A Matlab package of algebraic iterative reconstruction methods, J. Comput. Appl. Math. 236 (2012) 2167-2178.

DOI: 10.1016/j.cam.2011.09.039

Google Scholar

[10] J. Song, Y. Hong, G. Wang. Two-dimentional water temperature reconstruction by filter back-projection method, High Power Laser and Particle Beams. 24 (2012) 2073-(2078).

DOI: 10.3788/hplpb20122409.2073

Google Scholar