Ultrasonication-Induced Rapid Gelation of Wild Silkworm Silk Fibroins

Article Preview

Abstract:

Silk fibroin (SF) hydrogels of the wild silkworm species Antheraea pernyi and Antheraea yamamai were obtained from aqueous SF solutions at room temperature. Both A. pernyi and A. yamamai solutions were slow to gelate. Hydrogels of the two species of wild silkworm were obtained rapidly following ultrasonicaton at 400–500 W. The secondary structure of the freeze-dried SF hydrogels was measured by X-ray diffraction and Fourier transform infrared spectroscopy. Ultrasonication did not change the main secondary structure of the hydrogels, but it accelerated the structural transformation of silk fibroin molecules from random coil or α helix to β sheet and reduced the gelation time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1165-1169

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Y. Xiong, Y.M. Xu, Y.H. Jiao, L. Wang and M.Z. Li: Advanced Materials Research, Vol. 197 (2011), P. 27.

Google Scholar

[2] C.X. Zhao, X.F. Wu, Q. Zhang, S.Q Yan and M.Z. Li: International Journal of Biological Macromolecules, Vol. 48 (2011), P.249.

Google Scholar

[3] W. Tao, M.Z. Li and C.X. Zhao: International Journal of Biological Macromolecules, Vol.40 (2007), P.472.

Google Scholar

[4] M.Z. Li, Z.Y. Wu and S.Z. Lu: Journal of Dong Hua University (Nature Science Edition), Vol. 27(2) (2001), P.12.

Google Scholar

[5] M.Z. Li, S.Z. Lu and Z.Y. Wu: J Appl Polym Sci, Vol. 79 (2001), P.2185.

Google Scholar

[6] S. Sofia, M.B. McCarthy, G. Gronowicz and D. L. Kaplan: Journal of Biomedical Materials Research, Vol. 54 (2001), P.139.

Google Scholar

[7] L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G.Vunjak and D.L. Kaplan: Biomaterials, Vol. 26 (2005), P. 147.

DOI: 10.1016/j.biomaterials.2004.02.047

Google Scholar

[8] Q. Fang, D. Chen, Z. Yang, and M. Li: Materials Science and Engineering, Vol. 29(2009), P. 1527.

Google Scholar

[9] C. Patra, S. Talukdar, T. Novoyatleva, S.R. Velagala, C. Muhlfeld, B. Kundu, S.C. Kundu and F.B. Engel: Biomaterials, Vol. 33 (2012), P. 2673.

DOI: 10.1016/j.biomaterials.2011.12.036

Google Scholar

[10] J. Kopecek: Biomaterials, Vol. 28 (2007), P. 5185.

Google Scholar

[11] N. Minour, M.Tsukada and M.Nagura: Biomaterials, Vol. 11 (1990), P. 430.

Google Scholar

[12] A. Opdahl, S.H. Kim and T.S. Koffas: Journal of Biomedical Materials Research, Vol. 67 (2003) , P. 350.

Google Scholar

[13] K. Hirabayashi, Z.H. Ayub and Y. Kume: SEN-I GAKKAISHI, Vol. 46 (1990) , P.521.

Google Scholar

[14] A. Motta, C.Migliaresi, F. Faccioni, P. Torricelli, M. Fini and R Giardino: J Biomater Sci Polym Ed, Vol. 15 (2004), P. 851.

Google Scholar

[15] G.H. Altman, F. Diaz, C. Jakuba, T.Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond and D. L. Kaplan: Biomaterials, Vol. 24 (2003), P. 401.

DOI: 10.1016/s0142-9612(02)00353-8

Google Scholar

[16] Y.Y. Wang, Y.D. Cheng, Y. Liu, H.J. Zhao and M.Z. Li: Advanced Materials Research, Vol. 175 (2011), P. 143.

Google Scholar

[17] X. Wang, J.A. Kluge, G.G. Leisk, and D.L. Kaplan: Biomaterials, Vol. 29 (2008) , P. 1054.

Google Scholar

[18] M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, M. Tschon, R. Giardino, and C. Migliaresi: Biomaterials, Vol. 26 (2005), P. 3527.

DOI: 10.1016/j.biomaterials.2004.09.040

Google Scholar

[19] H.Yoshimizu and T. Asakura: Journal of Applied Polymer Science, Vol. 40 (1990) 1745-1756.

Google Scholar

[20] Z.H. Ayub, M. Arai and K. Hirabayashi: Polymer, Vol. 35 (1994), P. 197.

Google Scholar

[21] Z.H. Ayub, M. Arai and K. Hirabayashi: Bioscience biotechnology and biochemistry, Vol. 57 (1993), P. 1910.

Google Scholar

[22] T. Yucel, P. Cebe and D.L. Kaplan: Biophysical Journal, Vol. 97 (2009) , P. 2044.

Google Scholar