Air and Wet Air Oxidation of 9Cr-3Co-3W Creep Resistant Ferritic Steel at 650 °C

Article Preview

Abstract:

The new experimental creep resistant ferritic steel of the 9Cr-3Co-3W type was oxidised at 650 °C in air and wet air. The oxidation kinetics was measured by intermittent weight measurement. The scales formed were analysed using techniques of XRD, SEM and EDS. The results showed that the oxidation rate was more than a magnitude faster in wet air than in air. The oxidation kinetics in air obeyed the parabolic rate law of oxidation only in a limited oxidation period of up to 1726 h whereas it did not follow any power rate law of oxidation in wet air. The steel cannot form a protective Cr2O3 scale either in air or in wet air at 650 °C. Instead, the scale formed in air consisted of an outer (Fe0.6Cr0.4)2O3 layer and an inner Cr-rich (Fe,Cr)2O3 layer containing Cr2O3 particles, but in wet air it consisted of an outer Fe3O4 layer and an inner (Fe,Cr)3O4 layer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1685-1689

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.L. Kluenh: Int. Mater. Rev. Vol. 50 (2005), p.287.

Google Scholar

[2] R. Viswanathan and W. Bakker: J. Mater. Eng. Perform. Vol. 10 (2001), p.81.

Google Scholar

[3] T. Fujita: ISIJ Int. Vol. 32 (1992), p.175.

Google Scholar

[4] A. Strang, V. Vodarek: Mater. Sci. Technol. (1996), p.552.

Google Scholar

[5] H.K. Danielsen, J. Hald: Energy Materials Vol. 1 (2006), p.49.

Google Scholar

[6] L. Cipolla, H.K. Danielsen, P.E. Di Nunzio, D. Venditti, J. Hald, M.A.J. Somers: Scr. Mater. Vol. 63 (2010), p.324.

DOI: 10.1016/j.scriptamat.2010.04.025

Google Scholar

[7] C. Kocer, T. Abe, A. Soon: Mater. Sci. Eng. A Vol. 505 (2009), p.1.

Google Scholar

[8] H.K. Danielsen, J. Hald: Calphad Vol. 31 (2007), p.505.

Google Scholar

[9] M. Taneike, F. Abe and K. Sawada: Nature Vol. 424 (2003), p.294.

Google Scholar

[10] S.K. Albert, M. Kondo, M. Tabuchi, F. Yin, K. Sawada, F. Abe: Metall. Mater. Trans. A Vol. 36 (2005), p.333.

Google Scholar

[11] F. Yin, W. Jung, S. Chung: Scr. Mater. Vol. 57 (2007), p.469.

Google Scholar

[12] K. Kimura, Y. Toda, H. Kushima, K. Sawada: Int. J. Press. Vess. Pip. Vol. 87 (2010), p.282.

Google Scholar

[13] M.P. Taylor, H.E. Evans, S. Gray and J.R. Nicholls: Mater. Corros. Vol. 62 (2011), p.668.

Google Scholar

[14] J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, W.J. Quadakkers: Corros. Sci. Vol. 48 (2006), p.3428.

DOI: 10.1016/j.corsci.2006.02.002

Google Scholar

[15] P.J. Ennis, W.J. Quadakkers: Int. J. Press. Vess. Pip. Vol. 84 (2007), p.75.

Google Scholar

[16] Y Chen, K. Sridharan, T. Allen: Corros. Sci. Vol. 48 (2006), p.2843.

Google Scholar